闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閸屾粎纾奸柍褜鍓氱粭鐔煎焵椤掆偓閻e嘲饪伴崼顐f櫍闂佺粯鍨靛Λ娆戔偓闈涚焸濮婃椽妫冨☉姘暫濠碘槅鍋呴〃鍡涘箞閵婎煈妲剧紓浣介哺鐢繝骞冮埡鍛闁肩⒈鍏涚槐婵嬫⒒娴h櫣甯涘〒姘殜瀹曟娊鏁愰崱妯哄伎闂侀€炲苯澧撮柡灞炬礋瀹曠厧鈹戦崶鑸碉骏闂備礁鎲¤摫闁圭懓娲濠氬焺閸愩劎绐為柣蹇曞仦閸ㄦ繂鈻介鍛瘈闁靛繈鍨洪崵鈧┑鈽嗗亝缁诲倿鎮惧畡鎵虫斀闁糕檧鏅涢幃鎴︽⒑缁洖澧查柛鏃€甯為懞杈ㄧ節濮橆厸鎷洪梺鍛婄箓鐎氼剟鍩€椤掍焦鍊愰柟顔矫埞鎴犫偓锝呯仛閺呮粌顪冮妶鍡楀闁稿﹥顨堟竟鏇熺附缁嬭法楠囬梺鍓插亝缁嬫垶淇婇悾灞稿亾鐟欏嫭绀€闁活剙銈搁崺鈧い鎺戝枤濞兼劖绻涢崣澶呯細闁轰緡鍣i獮鎺懳旂€n剛鈼ゆ繝鐢靛█濞佳囶敄閹版澘鏋侀柛鏇ㄥ灡閻撱垺淇婇娆掝劅婵℃彃鍢查…璺ㄦ喆閸曨剛顦板┑顔硷攻濡炶棄鐣烽妸锔剧瘈闁告洦鍘剧粣妤呮⒒娴e懙鍦偓娑掓櫆缁绘稒绻濋崶褏鐣鹃柣蹇曞仩琚欓柡瀣叄閺岀喖骞嗚閸ょ喖鏌涘鈧禍璺侯潖濞差亜浼犻柛鏇ㄥ墮閸嬪秹姊洪崨濠冪叆闁活厼鍊块獮鍐潨閳ь剟骞冮埡鍛仺闁汇垻顣槐鏌ユ⒒娴h櫣甯涢柣鐔村灲瀹曟垿骞樼紒妯煎幈闂侀潧枪閸庢娊宕洪敐鍥e亾濞堝灝鏋涙い顓㈡敱娣囧﹪骞栨担鍝ュ幐闂佺ǹ鏈惌顔捐姳娴犲鈷掑ù锝呮嚈瑜版帒瀚夋い鎺戝€婚惌娆撴煙鏉堟儳鐦滈柡浣稿€块弻銊╂偆閸屾稑顏�濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮诲☉妯锋婵鐗婇弫楣冩⒑閸涘﹦鎳冪紒缁橈耿瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顖涒拺闁告繂瀚烽崕搴g磼閼搁潧鍝虹€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佽鍨庨崘锝嗗瘱缂傚倷绶¢崳顕€宕归幎钘夌闁靛繒濮Σ鍫ユ煏韫囨洖啸妞ゆ挻妞藉娲传閸曨偅娈滈梺绋款儐閹瑰洭寮诲☉銏犖ч柛娑卞瀺瑜旈弻锛勪沪閸撗勫垱婵犵绱曢崗姗€銆佸▎鎾村亗閹煎瓨蓱鐎氫粙姊婚崒娆愮グ婵℃ぜ鍔庣划鍫熸媴鐠囥儲妞介、姗€濮€閻樼儤鎲伴梻浣告惈濞村嫮妲愰弴銏″仾闁逞屽墴濮婃椽宕崟顒€绐涢梺绋库看閸嬪﹥淇婇悜鑺ユ櫆閺夌偞澹嗛惄搴ㄦ⒒娴g懓顕滄俊顐$窔椤㈡俺顦查柍璇茬Т椤撳吋寰勭€n剙骞嶆俊鐐€栧濠氭偤閺傚簱鏋旀繝濠傛噳閸嬫挾鎲撮崟顒傤槰濡炪們鍔屽Λ妤咁敋閵夆晛绀嬫い鎺戝€婚惁鍫熺箾鏉堝墽鍒板鐟帮工铻炴繝濠傜墛閳锋帡鏌涚仦鎹愬闁逞屽墴椤ユ挾鍒掗崼鐔虹懝闁逞屽墴閻涱喗寰勯幇顒備紜闁烩剝甯婇悞锕€顪冩禒瀣瀬闁告劦鍠栫壕鍏兼叏濡鏁剧紒鍗炲船閳规垿鎮╅鑲╀紘闂佺硶鏅滈悧鐘茬暦濠靛鍗抽柕蹇曞Т瀵兘姊洪棃娑辨Т闁哄懏绮撻幃锟犳偄閸忚偐鍘甸梻渚囧弿缁犳垿寮稿☉銏$厱闁哄倹顑欓崕鏃堟煛鐏炵晫效闁哄被鍔庨埀顒婄秵娴滅偞瀵煎畝鍕拺閻犲洠鈧櫕鐏堢紓鍌氱Т閿曨亪鎮伴鐣岀懝闁逞屽墴閻涱噣骞掑Δ鈧粻锝嗙節閸偄濮夐柍褜鍓濆▍鏇犳崲濠靛鍋ㄩ梻鍫熺◥缁爼姊洪悷鏉挎毐缂佺粯锚閻e嘲鈹戦崱蹇旂€婚梺瑙勫劤閻ゅ洭骞楅弴銏♀拺缂備焦蓱閳锋帡鏌涘Ο鐘叉噽閻棝鏌涢弴銊ョ仭闁绘挸绻橀弻娑㈩敃閿濆洨鐣哄銈冨劜缁秹濡甸崟顔剧杸闁靛绠戦锟�

高三数学同步检测(七)

第二章单元检测(A)

 

说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.

第Ⅰ卷(选择题共40分)

一、选择题(本大题共10小题,每小题4分,共40分)

1.式子12+22+32+…+n2=在(   )

A.n为任何自然数时都成立

B.n=1,2时成立,n=3时不成立

C.n=4时成立,n=5时不成立

D.n=3时成立,n=4时不成立

解析用数学归纳法证题的前提是分清等式两边的构成情况,就本题而言,它的左边是从1开始的n个连续正整数的平方和的形式,可采用直接代入法求解.

答案 D

试题详情

2.设,若f(x)存在,则常数b的值是(    )

A.0           B.1           C.-1        D.e

试题详情

分析 本题考查f(x)=a的充要条件:

试题详情

f(x)=f(x)=a.

试题详情

解 ∵(2x+b)=b,ex=1,

试题详情

又条件f(x)存在,∴b=1.

答案 B

试题详情

3.用数学归纳法证明+cosα+cos3α+…+cos(2n-1)α=??

(α≠kπ,n∈N*),验证n=1等式成立时,左边计算所得的项是(    )

试题详情

A.                       B.+cosα

试题详情

C.+cosα+cos3α             D.+cosα+cos3α+cos5α

分析 分清等式左边的构成情况是解决此题的关键;对于本题也可把n=1代入右边化简得出左边.

试题详情

解法一 因为等式的左边是(n+1)项的形式,故n=1时,应保留两项,它们是+cosα.

试题详情

解法二 当n=1时,右边=sincos=?(sin2α+sinα)= (sinαcosα+sinα)=+cosα.

答案 B

试题详情

4.数列1,,,,…,…的前n项和为Sn,则等于(    )

试题详情

A.0            B.             C.1             D.2

分析 本题考查数列极限的求法.要求数列{an}的前n项和,应首先确定它的通项公式.

试题详情

解 ∵an==

试题详情

∴Sn=a1+a2+…+an=2(1-+-+…+-)=.

试题详情

Sn=.

答案 D

试题详情

5.★若,则a的值为(   )

试题详情

A.0               B.1               C.-1               D.

分析 本题考查当x→x0时函数的极限.

试题详情

解 ∵存在,而把x=2代入分母时,分母为零,

∴分子、分母应有(x-2)这一公因式,化简以后,再求极限.

∴分子x2+ax-2可分解成(x-2)(x+1),

试题详情

即x2+ax-2=(x-2)(x+1)=x2-x-2.

试题详情

∴a=-1.

答案 C

试题详情

6.等于(   )

A.0            B.-1             C.1              D.不存在

试题详情

分析 本题考查函数f(x)的极限.若把x=-1代入函数解析式,解析式无意义,故应化简函数解析式,约去使它的分母为0的因式,再求解.

试题详情

=

试题详情

==

试题详情

=

答案 B

试题详情

7.★已知数列{an}是由正数组成的数列,a1=3,且满足lgan=lgan-1+lgc,其中n>1且为整数,c>2,则等于(    )

试题详情

A.-1          B.1        C.        D.

分析 本题考查数列的极限及运算能力.

解 ∵an>0,lgan=lgan-1+lgc,

试题详情

∴an=an-1?c,=c,

即数列{an}是首项为a1=3,公比为c的等比数列,an=3?cn-1(c>2),

试题详情

答案 A

试题详情

8.★欲用数学归纳法证明对于足够大的自然数n,总有2n>n3,n0为验证的第一个值,则(    )

A.n0=1

B.n0为大于1小于10的某个整数

C.n0≥10

D.n0=2

解析 本题考查用数学归纳法证明问题时,第一步初始值n0的确定.不能认为初始值都从n0=1开始,需根据实际题目而定.当1≤n<10时,2n与n3的大小不确定,而当n≥10时,总有2n>n3.

答案 C

试题详情

9.★用数学归纳法证明命题“n3+(n+1)3+(n+2)3(n∈N)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开(   )

A.(k+3)3         B.(k+2)3

C.(k+1)3                 D.(k+1)3+(k+2)3

分析 本题考查用数学归纳法证明整除性问题.只需把n=k+1时的情况拼凑成一部分为假设的形式,另一部分为除数的倍数形式即可.

解 当n=k+1时,被除数为(k+1)3+(k+2)3+(k+3)3=k3+(k+1)3+(k+2)3+9(k2+3k+3).故只需展开(k+3)3即可.

答案 A

试题详情

10. 则a的取值范围是(    )

试题详情

A.a=1                         B.a<-1或a>

试题详情

C.-1<a<                    D.a<-或a>1

试题详情

分析 本题考查极限qn=0,|q|<1.要求a的范围,可列a的不等式,要注意分式不等式的解法.

试题详情

解法一 ∵()n=0,∴||<1

试题详情

试题详情

∴a<-1或a>.

试题详情

解法二 本题可利用特殊值代入法,当a=1时成立,排除C、D.再令a=,∵()n=0成立,∴排除A.

答案 B

第Ⅱ卷(非选择题共60分)

试题详情

二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)

11.用数学归纳法证明,假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是              .

试题详情

解析 因为自变量取n时,不等式的左边为n项和的形式,所以当n=k+1时应为k+1项的和,它们是,右边只需把n=k+1代入即可,它们是,故应推证的不等式是

试题详情

答案

试题详情

12.()=                   .

分析 本题考查数列极限的运算.此题属于“∞-∞”型,应先分子有理化,再求极限.

试题详情

(n-n+1)==

答案 0

试题详情

13.★设函数在x=0处连续,则实数a的值为           .

试题详情

分析 本题考查函数的极限及函数f(x)在点x0处连续的定义.

解 ∵函数f(x)在点x0处连续,

试题详情

试题详情

又∵f(0)=a,∴a=.

试题详情

答案

试题详情

14.已知,则a的值为           .

试题详情

分析 本题考查f(x)的极限.因为把x=x0代入分式的分子,分子不为0.又因为f(x)存在,所以把x=x0代入分母,分母必不为0.故采用直接代入法即可求极限.

试题详情

解 ∵

试题详情

答案

试题详情

三、解答题(本大题共5小题,共44分.解答应写出文字说明、证明过程或演算步骤)

15.(本小题满分8分)平面内有n个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,求证:n个圆把平面分成f(n)=n2-n+2个部分.

分析 本题的关键在于如何应用归纳假设及已知条件分析当n=k+1时,第k+1个圆与其他k个圆的交点个数,做到有目的的变形.

证明 (1)当n=1时,一个圆把平面分成两部分,又12-1+2=2,故命题成立.

(2)假设n=k(k∈N*)时,命题成立,即满足题设条件的k个圆把平面分成f(k)=k2-k+2个部分.2分

试题详情

那么当n=k+1时,设第k+1个圆为⊙O,由题意,它与k个圆中每个圆交于两点,又无三个圆交于同一点,于是它与其他k个圆交于2k个点,这些点把⊙O分成2k条弧,即f(k+1)=f(k)+2k=k2-k+2+2k=(k+1)2-(k+1)+2.    6分

这就是说,当n=k+1时,命题也成立.

综上可知,对一切n∈N*,命题都成立.    8分

试题详情

16.(本小题满分8分)设f(x)是一次函数,f(8)=15,且f(2),f(5),f(4)成等比数列,求.

分析 本题为函数、数列、极限的一道综合题.解题关键是先利用待定系数法确定f(x)的解析式,再求f(1)+f(2)+…+f(n),然后利用极限的运算法则求极限.

解 设f(x)=kx+b,

由条件,得8k+b=15,∴b=15-8k.

∵f (2), f (5), f (4)成等比数列,

∴(5k+b)2=(2k+b)(4k+b).      2分

把b=15-8k代入,

得(15-3k)2=(15-6k)(15-4k).

试题详情

解得k=4,k=0(舍),b=-17.

试题详情

∴f(x)=4x-17.       4分

∴f(1)+f(2)+…+f(n)

=(4×1-17)+(4×2-17)+…+(4×n-17)

=4×(1+2+…+n)-17n

试题详情

=4?-17n=2n2-15n.    6分

试题详情

试题详情

=     8分

试题详情

17.(本小题满分8分)某校有教职工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室.据调查统计,每次去健身房的人有10%下次去娱乐室,则在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?

分析 本题考查用数列的递推公式求通项及数列的极限.

解 设第n次去健身房的人数为an,去娱乐室的人数为bn,则an+bn=150,              2分

试题详情

∴an=an-1+bn-1=an-1+(150-an-1)=an-1+30,

试题详情

即an=an-1+30.                  4分

试题详情

∴an-100=(an-1-100).于是an-100=(a1-100)?()n-1,即an=100+()n-1?(a1-100).  6分

试题详情

an=100.故随着时间的推移,去健身房的人数稳定在100人左右.              8分

试题详情

18.(本小题满分10分)已知数列{an}、{bn},其中an=1+3+5+…+(2n+1),bn=2n+4(n≥5),试问是否存在这样的自然数n,使得an≤bn成立?

分析 对n赋值后,比较几对an与bn的大小,可作出合理猜测,再用数学归纳法予以证明.

解 an=1+3+5+…+(2n+1)=(n+1)2,

当n=5时,a5=36,b5=25+4=36,此时a5=b5;

当n=6时, a6=49,b6=26+4=68,此时a6<b6;

当n=7时,a7=64,b7=27+4=132,此时a7<b7;

当n=8时,a8=81,b8=28+4=260,此时a8<b8.

猜想:当n≥6时,有an<bn.         3分

下面用数学归纳法证明上述猜想.

①当n=6时,显然不等式成立,∴n=6时,不等式an<bn成立;

②假设当n=k(k≥6)时,不等式成立,即ak<bk,也即(k+1)2<2k+4;当n=k+1时,bk+1=2k+1+4=2(2k+4)-4>2(k+1)2-4=2k2+4k-2,

而(2k2+4k-2)-(k+2)2=k2-6>0(∵k≥6,∴k2>6),

即2k2+4k-2>(k+2)2=[(k+1)+1]2.

由不等式的传递性,知bk+1>[(k+1)+1]2=ak+1.

∴当n=k+1时,不等式也成立.    8分

由①②可知,对一切n∈N,且n≥6,都有an<bn.

综上所述,可知只有当n=5时,an=bn;当n≥6时,an<bn.因此存在使an≤bn成立的自然数n.

10分

试题详情

19.★(本小题满分10分)已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2是a2与a3的等差中项,且.求极限的值.

试题详情

分析 首先需求出an、bn的表达式,以确定所求极限的表达式,为此,关键在于求出两个数列的公差,“b2是a2与a3的等差中项”已给出一个等量关系,“an与bn之比的极限为”又给出了另一个等量关系,故可考虑先设出公差用二元方程组求解.

解 设{an}、{bn}的公差分别为d1、d2,

∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1),

试题详情

∴2d2-3d1=2.①    2分

试题详情

即d2=2d1,②       4分

试题详情

联立①②解得d1=2,d2=4.

∴an=a1+(n-1)d1=3+(n-1)?2=2n+1,

试题详情

bn=b1+(n-1)d2=2+(n-1)?4=4n-2.     6分

试题详情

10分

 

试题详情


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偠顕ч埀顒佺箓閻g兘顢曢敃鈧敮闂佹寧妫佹慨銈夋儊鎼粹檧鏀介柣鎰▕閸ょ喎鈹戦鐐毈闁硅櫕绻冮妶锝夊礃閵娧冨箣闂備胶鎳撻顓㈠磻濞戞氨涓嶉柣妯肩帛閳锋垹绱掔€n亜鐨¢柡鈧紒妯镐簻闁靛ǹ鍎查ˉ銏☆殽閻愯尙澧﹀┑鈩冪摃椤︻噣鏌涚€n偅宕屾俊顐㈠暙閳藉鈻庤箛鏃€鐣奸梺璇叉唉椤煤閺嵮屽殨闁割偅娲栫粻鐐烘煏婵炲灝鍔存繛鎾愁煼閹綊宕堕鍕婵犮垼顫夊ú鐔奉潖缂佹ɑ濯撮柧蹇曟嚀缁椻剝绻涢幘瀵割暡妞ゃ劌锕ら悾鐑藉级鎼存挻顫嶅┑顔矫ぐ澶岀箔婢跺ň鏀介柣鎰綑閻忥箓鎳i妶鍡曠箚闁圭粯甯炴晶娑氱磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏃€淇婇悙顏勨偓鏇犳崲閹烘绐楅柡宓本缍庣紓鍌欑劍钃卞┑顖涙尦閺屻倝骞侀幒鎴濆Б闂侀潧妫楅敃顏勵潖濞差亝顥堥柍鍝勫暟鑲栫紓鍌欒兌婵敻骞戦崶顒佸仒妞ゆ棁娉曢悿鈧┑鐐村灦閻燂箑鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘垹鐭嗛柛鎰ㄦ杺娴滄粓鏌¢崶褎顥滄繛灞傚€濋幃鈥愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬫鍎愰柛鏃€鐟╁璇测槈濡攱鐎婚棅顐㈡祫缁茬偓鏅ラ梻鍌欐祰椤曟牠宕板Δ鍛仭鐟滃繐危閹版澘绠婚悗娑櫭鎾绘⒑閸涘﹦绠撻悗姘卞厴閸┾偓妞ゆ巻鍋撻柣顓炲€垮璇测槈閵忕姈鈺呮煏婢诡垰鍟伴崢浠嬫煟鎼淬埄鍟忛柛鐘崇墵閳ワ箓鏌ㄧ€b晝绠氶梺褰掓?缁€渚€鎮″☉銏$厱閻忕偛澧介悡顖滅磼閵娿倗鐭欐慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭磼濠婂懐鍘梻浣侯攰閹活亞鈧潧鐭傚顐﹀磼閻愬鍙嗛梺缁樻礀閸婂湱鈧熬鎷�