1. 设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)・c=
A.(-15,12) B.0 C.-3 D.-11
2. 若非空集合A,B,C满足A∪B=C,且B不是A的子集,则
A.“x∈C”是“x∈A”的充分条件但不是必要条件
B. “x∈C”是“x∈A”的必要条件但不是充分条件
C. “x∈C”是“x∈A”的充分条件
D. “x∈C”是“x∈A”的充分条件也不是“x∈A”必要条件
3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为
A. B. C. D.
4. 函数f(x)=的定义域为
A.(- ∞,-4)[∪2,+ ∞] B.(-4,0) ∪(0,1)
C. [-4,0]∪(0,1)] D. [-4,0∪(0,1)
5.将函数y=3sin(x-θ)的图象F按向量(,3)平移得到图象F′,若F′的一条对称轴是直线x=,则θ的一个可能取值是
A. B. C. D.
6.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为
A.540 B.300 C.180 D.150
7.若f(x)=上是减函数,则b的取值范围是
A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1)
8.已知m∈N*,a,b∈R,若,则a・b=
A.-m B.m C.-1 D.1
9.过点A(11,2)作圆的弦,其中弦长为整数的共有
A.16条 B.17条 C.32条 D.34条
10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P轨进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④<.
其中正确式子的序号是
A.①③ B.②③ C.①④ D.②④
11.设z1=z1-z1(其中z1表示z1的共轭复数),已知z2的实部是-1,则z2的虚部为 .
12.在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC的值为 .
13.已知函数f(x)=x2+2x+a,f(bx)=9x-6x+2,其中x∈R,a,b为常数,则方程f(ax+b)=0的解集为
.
14.已知函数f(x)=2x,等差数列{ax}的公差为2.若f(a2+a4+ab+a2+a1)=4,则
Log2[f(a1)・f(a2)・f(a)・…・f(a10)]= .
15.观察下列等式:
……………………………………
可以推测,当x≥2(k∈N*)时,
ak-2= .
16.(本小题满分12分)
已知函数f(t)=
(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π])的形式;
(Ⅱ)求函数g(x)的值域.
17.(本小题满分12分)
袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.
(Ⅰ)求ξ的分布列,期望和方差;
(Ⅱ)若η=aξ-b,Eη=1,Dη=11,试求a,b的值.
18.(本小题满分12分)
如图,在直三棱柱ABC-A1B1C1中,平面ABC⊥侧面A1ABB1.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ的大小关系,并予以证明.
19.(本小题满分13分)
如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,
∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.
若△OEF的面积不小于2,求直线l斜率的取值范围.
20.(本小题满分12分)
水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t<t表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).
21.(本小题满分14分)
已知数列{an}和{bn}满足:a1=λ,an+1=其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有
a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
2008年普通高等学校招生全国统一考试(湖北卷)
数学(理工农医类)
5. 设,,则
A. B. C. D.
解:,,选C
6. 若非空集合满足,且不是的子集,则
A. “”是“”的充分条件但不是必要条件
B. “”是“”的必要条件但不是充分条件
C. “”是“”的充要条件
D. “”既不是“”的充分条件也不是“”必要条件
解:,但是, 所以B正确。
另外画出韦恩图,也能判断B选项正确
7. 用与球心距离为的平面去截球,所得的截面面积为,则球的体积为
A. B. C. D.
解:截面面积为截面圆半径为1,又与球心距离为球的半径是,
所以根据球的体积公式知,故B为正确答案.
8. 函数的定义域为
A. B.
C. D.
解:函数的定义域必须满足条件:
5.将函数的图象F按向量平移得到图象,若的一条对称轴是直线,则的一个可能取值是
A. B. C. D.
解: 平移得到图象的解析式为,
对称轴方程,
把带入得,令,
6.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为 A. 540 B. 300 C. 180 D. 150
解:将5分成满足题意的3份有1,1,3与2,2,1两种,
所以共有 种方案,故D正确.
7.若上是减函数,则的取值范围是
A. B. C. D.
解:由题意可知,在上恒成立,
即在上恒成立,由于,所以,故C为正确答案.
8.已知,,若,则
A. B. C. D.
解:
另外易知由洛必达法则,所以
9.过点作圆的弦,其中弦长为整数的共有
A. 16条 B. 17条 C. 32条 D. 34条
解:圆的标准方程是:,圆心,半径
过点的最短的弦长为10,最长的弦长为26,(分别只有一条)
还有长度为的各2条,所以共有弦长为整数的条。
10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点轨进入以月球球心为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在点第三次变轨进入以为圆心的圆形轨道Ⅲ绕月飞行,若用和分别表示椭轨道Ⅰ和Ⅱ的焦距,用和分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:
①; ②; ③; ④<.
其中正确式子的序号是
A. ①③ B. ②③ C. ①④ D. ②④
解:由焦点到顶点的距离可知②正确,由椭圆的离心率知③正确,故应选B.
11.设(其中表示z1的共轭复数),已知z2的实部是,则z2的虚部为 .
解:设,由复数相等
12.在△中,三个角的对边边长分别为,则的值为 .
解:由余弦定理,原式
13.已知函数,,其中,为常数,则方程的解集为 .
解:由题意知所以
,所以解集为。
14.已知函数,等差数列的公差为.若,则
.
解:依题意,所以
15.观察下列等式:
……………………………………
可以推测,当≥2()时, .
解:由观察可知当,每一个式子的第三项的系数是成等差数列的,所以,
第四项均为零,所以。
16.(本小题满分12分)
已知函数
(Ⅰ)将函数化简成(,,)的形式;
(Ⅱ)求函数的值域.
解.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)
解:(Ⅰ)
=
(Ⅱ)由得
在上为减函数,在上为增函数,
又(当),
即
故g(x)的值域为
17.(本小题满分12分)
袋中有20个大小相同的球,其中记上0号的有10个,记上号的有个(=1,2,3,4).现从袋中任取一球.表示所取球的标号.
(Ⅰ)求的分布列,期望和方差;
(Ⅱ)若, ,,试求a,b的值.
解:本题考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)
解:(Ⅰ)的分布列为:
0
1
2
3
4
P
∴
(Ⅱ)由,得a2×2.75=11,即又所以
当a=2时,由1=2×1.5+b,得b=-2;
当a=-2时,由1=-2×1.5+b,得b=4.
∴或即为所求.
18.(本小题满分12分)
如图,在直三棱柱中,平面侧面.
(Ⅰ)求证:;
(Ⅱ)若直线与平面所成的角为,二面角的大小为,试判断与的大小关系,并予以证明.
解:本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分)
(Ⅰ)证明:如右图,过点A在平面A1ABB1内作
AD⊥A1B于D,则
由平面A1BC⊥侧面A1ABB1,且平面A1BC侧面A1ABB1=A1B,得
AD⊥平面A1BC,又BC平面A1BC,
所以AD⊥BC.
因为三棱柱ABC―A1B1C1是直三棱柱,
则AA1⊥底面ABC,
所以AA1⊥BC.
又AA1AD=A,从而BC⊥侧面A1ABB1,
又AB侧面A1ABB1,故AB⊥BC.
(Ⅱ)解法1:连接CD,则由(Ⅰ)知是直线AC与平面A1BC所成的角,
是二面角A1―BC―A的平面角,即
于是在Rt△ADC中,在Rt△ADB中,
由AB<AC,得又所以
解法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分
别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,设AA1=a,AC=b,
AB=c,则 B(0,0,0), A(0,c,0), 于是
设平面A1BC的一个法向量为n=(x,y,z),则
由得
可取n=(0,-a,c),于是与n的夹角为锐角,则与互为余角.
所以
于是由c<b,得
即又所以
19.(本小题满分13分)
如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,
,曲线是满足为定值的动点的轨迹,且曲线过点.
(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;
(Ⅱ)设过点的直线l与曲线相交于不同的两点、.
若△的面积不小于,求直线斜率的取值范围.
解:本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)
(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设实平轴长为a,虚半轴长为b,半焦距为c,
则c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为.
解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设双曲线的方程为>0,b>0).
解得a2=b2=2,
∴曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
②
设E(x,y),F(x2,y2),则由①式得x1+x2=,于是
|EF|=
=
而原点O到直线l的距离d=,
∴S△DEF=
若△OEF面积不小于2,即S△OEF,则有
③
综合②、③知,直线l的斜率的取值范围为
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴.
. ②
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|= ③
当E、F在同一去上时(如图1所示),
S△OEF=
当E、F在不同支上时(如图2所示).
S△ODE=
综上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面积不小于2
④
综合②、④知,直线l的斜率的取值范围为
20.(本小题满分12分)
水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取计算).
解:本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)
(Ⅰ)①当时,,化简得,
解得,或,又,故.
②当时,,化简得,
解得,又,故.
综合得,或;
故知枯水期为1月,2月,3月,11月,12月共5个月.
(Ⅱ)(Ⅰ)知:V(t)的最大值只能在(4,10)内达到.
由V′(t)=
令V′(t)=0,解得t=8(t=-2舍去).
当t变化时,V′(t) 与V (t)的变化情况如下表:
t
(4,8)
8
(8,10)
V′(t)
+
0
-
V(t)
极大值
由上表,V(t)在t=8时取得最大值V(8)=8e2+50-108.52(亿立方米).
故知一年内该水库的最大蓄水量是108.32亿立方米
21.(本小题满分14分)
已知数列和满足:,其中为实数,为正整数.
(Ⅰ)对任意实数,证明数列不是等比数列;
(Ⅱ)试判断数列是否为等比数列,并证明你的结论;
(Ⅲ)设,为数列的前项和.是否存在实数,使得对任意正整数,都有
?若存在,求的取值范围;若不存在,说明理由.
解:本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)
(Ⅰ)证明:假设存在一个实数λ,使{an}是等比数列,则有a22=a1a3,即
矛盾.
所以{an}不是等比数列.
(Ⅱ)解:因为bn+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(an-2n+14)
=(-1)n・(an-3n+21)=-bn
又b1x-(λ+18),所以
当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列:
当λ≠-18时,b1=(λ+18) ≠0,由上可知bn≠0,∴(n∈N+).
故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-为公比的等比数列.
(Ⅲ)由(Ⅱ)知,当λ=-18,bn=0,Sn=0,不满足题目要求.
∴λ≠-18,故知bn= -(λ+18)・(-)n-1,于是可得
Sn=-
要使a<Sn<b对任意正整数n成立,
即a<-(λ+18)・[1-(-)n]〈b(n∈N+)
①
当n为正奇数时,1<f(n)
∴f(n)的最大值为f(1)=,f(n)的最小值为f(2)= ,
于是,由①式得a<-(λ+18),<
当a<b3a时,由-b-18=-3a-18,不存在实数满足题目要求;
当b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18)