科目: 来源: 题型:
【题目】体温是人体健康状况的直接反应,一般认为成年人腋下温度(单位:
)平均在
之间即为正常体温,超过
即为发热.发热状态下,不同体温可分成以下三种发热类型:低热:
;高热:
;超高热(有生命危险):
.
某位患者因患肺炎发热,于12日至26日住院治疗. 医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热. 住院期间,患者每天上午8:00服药,护士每天下午16:00为患者测量腋下体温记录如下:
(1)请你计算住院期间该患者体温不低于的各天体温平均值;
(2)在日—
日期间,医生会随机选取
天在测量体温的同时为该患者进行某一特殊项目“
项目”的检查,记
为高热体温下做“
项目”检查的天数,试求
的分布列与数学期望;
(3)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于曲线,给出下列三个结论:
① 曲线关于原点对称,但不关于
轴、
轴对称;
② 曲线恰好经过4个整点(即横、纵坐标均为整数的点);
③ 曲线上任意一点到原点的距离都不大于
.
其中,正确结论的序号是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:①函数;
②向量,
,且
,
;
③函数的图象经过点
请在上述三个条件中任选一个,补充在下面问题中,并解答.
已知_________________,且函数的图象相邻两条对称轴之间的距离为
.
(1)若,且
,求
的值;
(2)求函数在
上的单调递减区间.
注:如果选择多个条件分别解答,按第一个解答计分.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数.
(1)若曲线在
处的切线与
轴平行,求
;
(2)已知在
上的最大值不小于
,求
的取值范围;
(3)写出所有可能的零点个数及相应的
的取值范围.(请直接写出结论)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为
,过椭圆右焦点
的直线
与椭圆交于
,
两点,当直线
与
轴垂直时,
.
(1)求椭圆的标准方程;
(2)当直线与
轴不垂直时,在
轴上是否存在一点
(异于点
),使
轴上任意点到直线
,
的距离均相等?若存在,求
点坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于函数,有以下三个结论:
①函数恒有两个零点,且两个零点之积为;
②函数的极值点不可能是;
③函数必有最小值.
其中正确结论的个数有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线
的参数方程为
(其中
为参数,
).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
被
截得的弦长为
.
(1)求实数的值;
(2)设与
交于点
,
,若点
的坐标为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】2014年,中央和国务院办公厅印发《关于引导农村土地经营权有序流转发展农业适度规模经营的意见》,要求大力发展土地流转和适度规模经营.某种粮大户2015年开始承包了一地区的大规模水田种植水稻,购买了一种水稻收割机若干台,这种水稻收割机随着使用年限的增加,每年的养护费也相应增加,这批水稻收割机自购买使用之日起,5年以来平均每台水稻收割机的养护费用数据统计如下:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
养护费用 | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)从这5年中随机抽取2年,求平均每台水稻收割机每年的养护费用至少有1年多于2万元的概率;
(2)求关于
的线性回归方程;
(3)若该水稻收割机的购买价格是每台16万元,由(2)中的回归方程,从每台水稻收割机的年平均费用角度,你认为一台该水稻收割机是使用满5年就淘汰,还是继续使用到满8年再淘汰?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com