【题目】已知函数
,
,在
处的切线方程为
.
(1)求
,
;
(2)若
,证明:
.
【答案】(1)
,
;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于
的方程组,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用导数研究其单调性可得
,
从而证明
.
试题解析:((1)由题意
,所以
,
又
,所以
,
若
,则
,与
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
当
时,
,
单调递减,且
;
当
时,
,
单调递增;且
,
所以
在
上当单调递减,在
上单调递增,且
,
故
,
故
.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
参考答案:
【答案】(1)
;(2)![]()
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线
的直角坐标方程为
,
,消去参数
可知曲线
是圆心为
,半径为
的圆,由直线
与曲线
相切,可得:
;则曲线C的方程为
, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(
),
,(
),
,
,
由此可求
面积的最大值.
试题解析:(1)由题意可知直线
的直角坐标方程为
,
曲线
是圆心为
,半径为
的圆,直线
与曲线
相切,可得:
;可知曲线C的方程为
,
所以曲线C的极坐标方程为
,
即
.
(2)由(1)不妨设M(
),
,(
),
,
![]()
,
当
时,
,
所以△MON面积的最大值为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
且
.
当
时,函数
恒有意义,求实数
的取值范围;
是否存在这样的实数
,使得函数
在区间
上为减函数,并且最大值为1?如果存在,试求出
的值;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】通过随机询问250名不同性别的高中生在购买食物时是否看营养说明书,得到如下列联表:
女
男
总计
读营养说明书
90
60
150
不读营养说明书
30
70
100
总计
120
130
250
从调查的结果分析,认为性别和读营养说明书的关系为( )
附:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
.A. 95%以上认为无关 B. 90%~95%认为有关 C. 95%~99.9%认为有关 D. 99.9%以上认为有关
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,
为线段
的垂直平分线,
与
交与点
为
上异于
的任意一点.
求
的值;
判断
的值是否为一个常数,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,a,b,c分别是角A,B,C的对边,b=
sinB,且满足tanA+tanC=
. (Ⅰ)求角C和边c的大小;
(Ⅱ)求△ABC面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图(1)将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图(2)).

(1)求证:A1E⊥平面BEP;
(2)求二面角B﹣A1P﹣E的余弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
(
).(1)若
,函数
的最大值为
,最小值为
,求
的值;(2)当
时,函数
的最大值为
,求
的值.
相关试题