【题目】甲、乙两名运动员的5次测试成绩如下图所示:
甲 | 茎 | 乙 |
5 7 | 1 | 6 8 |
8 8 2 | 2 | 3 6 7 |
设s1 , s2分别表示甲、乙两名运动员测试成绩的标准差,
分别表示甲、乙两名运动员测试成绩的平均数,则有( )
A.
,s1<s2
B.
,s1>s2
C.
,s1>s2
D.
,s1=s2
参考答案:
【答案】B
【解析】解:∵由茎叶图知甲的平均数是
=22,
乙的平均数是
=22,
∴甲和乙的平均数相等.
∵甲的方差是
乙的方差是
=16.8
∴s1>s2 ,
总上可知
,s1>s2
故选B.
【考点精析】根据题目的已知条件,利用茎叶图和平均数、中位数、众数的相关知识可以得到问题的答案,需要掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少;⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(12分)如图,底面是正三角形的直三棱柱
中,D是BC的中点,
.
(Ⅰ)求证:
平面
;(Ⅱ)求的A1 到平面
的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】把边长为2的正方形ABCD沿对角线BD折起并连接AC形成三棱锥C﹣ABD,其正视图、俯视图均为等腰直角三角形(如图所示),则三棱锥C﹣ABD的表面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,内角A、B、C所对的边分别为a、b、c,a=
.
(1)求bcosC+ccosB的值;
(2)若cosA=
,求b+c的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:

(Ⅰ)求频率分布直方图中
的值;(Ⅱ)分别求出成绩落在
,
中的学生人数;(Ⅲ)从成绩在
的学生中任选2人,求此2人的成绩都在
中的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的方程为
.(1)求圆
的直角坐标方程;(2)设圆
与直线
交于点
,若点
的坐标为
,求
的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.

(1)求证:平面PAC⊥平面PCD;
(2)若E是PD的中点,求平面BCE将四棱锥P﹣ABCD分成的上下两部分体积V1、V2之比.
相关试题