【题目】在平面直角坐标系
中,
![]()
已知圆
和圆
.
(1)若直线
过点
,且被圆
截得的弦长为
,
求直线
的方程;(2)设P为平面上的点,满足:
存在过点P的无穷多对互相垂直的直线
和
,
它们分别与圆
和圆
相交,且直线
被圆![]()
截得的弦长与直线
被圆
截得的弦长相等,试求所有满足条件的点P的坐标。
参考答案:
【答案】(1)
或
,(2)P在以C1C2的中垂线上,且与C1、C2等腰直角三角形,利用几何关系计算可得点P坐标为
或
。
【解析】
(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d=
=1,结合点到直线距离公式,得
=1,化简得24k2+7k=0,解得k=0或k=-
.
所求直线l的方程为y=0或y=-
(x-4),即y=0或7x+24y-28=0.
(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-
(x-m),即kx-y+n-km=0,-
x-y+n+
m=0.
因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有
,
化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.
因为关于k的方程有无穷多解,所以有![]()
解得点P坐标为
或
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分12分)
如图在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的
中点.
(1) 求证: AC⊥BC1
(2) 求证:AC1∥平面CDB1
(3) 求异面直线AC1与B1C所成角的余弦值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
.(1)若直线
不经过第四象限,求
的取值范围;(2)若直线
交
轴负半轴于点
,交
轴正半轴于点
,
为坐标原点,设
的面积为
,求
的最小值及此时直线
的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为
,圆C的参数方程为
(α为参数).
(1)直线l过M且与圆C相切,求直线l的极坐标方程;
(2)过点P(0,m)且斜率为
的直线l'与圆C交于A,B两点,若|PA||PB|=6,求实数m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知边长为
的正
的顶点
在平面
内,顶点
,
在平面
外的同一侧,点
,
分别为
,
在平面
内的投影,设
,直线
与平面
所成的角为
.若
是以角
为直角的直角三角形,则
的最小值为__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】下表是某地一家超市在2018年一月份某一周内周2到周6的时间
与每天获得的利润
(单位:万元)的有关数据.星期

星期2
星期3
星期4
星期5
星期6
利润

2
3
5
6
9
(1)根据上表提供的数据,用最小二乘法求线性回归直线方程
;(2)估计星期日获得的利润为多少万元.
参考公式:

-
科目: 来源: 题型:
查看答案和解析>>【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(1)求出
的值;(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
相关试题