【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
常喝 | 不常喝 | 合计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合计 | 30 |
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=
,其中n=a+b+c+d)
参考答案:
【答案】
(1)解:设常喝碳酸饮料肥胖的学生有x人,
.
常喝 | 不常喝 | 合计 | |
肥胖 | 6 | 2 | 8 |
不胖 | 4 | 18 | 22 |
合计 | 10 | 20 | 30 |
(2)解:由已知数据可求得:
因此有99.5%的把握认为肥胖与常喝碳酸饮料有关
(3)解:设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有 AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.
其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.共8种.
故抽出一男一女的概率是 ![]()
【解析】(1)设常喝碳酸饮料肥胖的学生有x人,
.即可将上面的列联表补充完整;(2)根据列联表所给的数据,代入求观测值的公式,把观测值同临界值进行比较,得到有99.5%的把握说看营养说明与性别有关.(3)利用列举法,求出基本事件的个数,即可求出正好抽到一男一女的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与
的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与
的数据如表:时间
星期一
星期二
星期三
星期四
星期五
星期六
星期日
车流量
(万辆)1
2
3
4
5
6
7
的浓度
(微克/立方米)28
30
35
41
49
56
62
(1)由散点图知
与
具有线性相关关系,求
关于
的线性回归方程;(提示数据:
)(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时
的浓度;(II)规定:当一天内
的浓度平均值在
内,空气质量等级为优;当一天内
的浓度平均值在
内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是
,其中
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1 .

(1)求证:AB1⊥平面A1BC1;
(2)若D为B1C1的中点,求AD与平面A1BC1所成的角. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
为实常数.(Ⅰ)设
,当
时,求函数
的单调区间;(Ⅱ)当
时,直线
、
与函数
、
的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】给定椭圆C:
(a>b>0).称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(
,0),其短轴上的一个端点到点F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1 , l2 , 使得l1 , l2与椭圆C都只有一个交点,试判断l1 , l2是否垂直,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知过
的动圆恒与
轴相切,设切点为
是该圆的直径.(Ⅰ)求
点轨迹
的方程;(Ⅱ)当
不在y轴上时,设直线
与曲线
交于另一点
,该曲线在
处的切线与直线
交于
点.求证:
恒为直角三角形. -
科目: 来源: 题型:
查看答案和解析>>【题目】某研究型学习小组调查研究”中学生使用智能手机对学习的影响”.部分统计数据如下表:

参考数据:

参考公式:
,其中
(Ⅰ)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用智能手机对学习有影响?
(Ⅱ)研究小组将该样本中使用智能手机且成绩优秀的4位同学记为
组,不使用智能手机且成绩优秀的8位同学记为
组,计划从
组推选的2人和
组推选的3人中,随机挑选两人在学校升旗仪式上作“国旗下讲话”分享学习经验.求挑选的两人恰好分别来自
、
两组的概率.
相关试题