【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了 1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考:用最小二乘法求线性回归方程系数公式
,
)
参考答案:
【答案】(1)
;(2)
;(3)该小组所得线性回归方程是理想的.
【解析】试题分析:(1)由列举法可得从6组数据中选取2组数据共有15种情况, 抽到相邻两个月的数据的情况有5种,由古典概型概率公式可得结果;(2)由公式
求出
的值,将样本中心点的坐标代入回归方程可得
的值,从而可得结果;(3)根据
时与
时,由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,即可得结果.
试题解析:(1)设抽到相邻两个月的数据为事件A.
因为从6组数据中选取2组数据共有15种情况,
每种情况都是等可能出现的其中,抽到相邻两个月的数据的情况有5种,
所以
(2) 由数据求得
, 由公式求得
再由
,
所以关于的线性回归方程为![]()
(3)当
时,
,
;
同样, 当
时,
,
所以,该小组所得线性回归方程是理想的.
【方法点晴】本题主要考查古典概型概率公式和线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算
的值;③计算回归系数
;④写出回归直线方程为
;(2) 回归直线过样本点中心
是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某车间共有
名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. 
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间
名工人中有几名优秀工人;(Ⅲ) 从该车间
名工人中,任取2人,求恰有1名优秀工人的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如表:
学生编号
1
2
3
4
5
6
语文成绩

60
70
74
90
94
110
历史成绩

58
63
75
79
81
88
(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(Ⅱ)用表中数据画出散点图易发现历史成绩
与语文成绩
具有较强的线性相关关系,求
与
的线性回归方程(系数精确到0.1).参考公式:回归直线方程是
,其中
, 
-
科目: 来源: 题型:
查看答案和解析>>【题目】公元
年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值
,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中
表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 ( )(参考数据:
)
A. 2.598,3,3.1048 B. 2.598,3,3.1056
C. 2.578,3,3.1069 D. 2.588,3,3.1108
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校为了解学生在课外读物方面的支出情况,抽取了n名同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n的值为( )

A. 100 B. 120 C. 130 D. 390
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
关于直线
对称的圆为
.(1)求圆
的方程;(2)过点
作直线
与圆
交于
两点,
是坐标原点,是否存在这样的直线
,使得在平行四边形
中
?若存在,求出所有满足条件的直线
的方程;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}是各项为正数的等比数列,且a2=9,a4=81.
(1)求数列{an}的通项公式an;
(2)若bn=log3an , 求证:数列{bn}是等差数列.
相关试题