【题目】如图,在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,且AD=4DC.
(Ⅰ)求BD的长;
(Ⅱ)求sin∠CBD的值.


参考答案:

【答案】解:(Ⅰ)因为∠ABC=90°,AB=4,BC=3, 所以cosC= ,sinC= ,AC=5,
又因为AD=4DC,所以AD=4,DC=1.
在△BCD中,由余弦定理,
得BD2=BC2+CD2﹣2BCCDcosC
=32+12﹣2× =
所以
(Ⅱ)在△BCD中,由正弦定理,得
所以
所以 sin∠CBD=
【解析】(Ⅰ)由已知可求cosC,sinC,AC,又AD=4DC,可求AD,DC,从而由余弦定理BD2=BC2+CD2﹣2BCCDcosC即可求BD的值.(Ⅱ)在△BCD中,由正弦定理即可求得sin∠CBD的值.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;

关闭