【题目】已知向量
=(1,2),
=(cosα,sinα),设
=
﹣t
(t为实数).
(1)t=1 时,若
∥
,求2cos2α﹣sin2α的值;
(2)若α=
,求|
|的最小值,并求出此时向量
在
方向上的投影.
参考答案:
【答案】
(1)解:t=1,
=
﹣t
=(1﹣cosα,2﹣sinα).
∵
∥
,
∴cosα(1﹣sinα)﹣sinα(1﹣cosα)=0,
∴tanα=2;
∴2cos2α﹣sin2α=
=
=﹣ ![]()
(2)解:α=
,|
|=
=
=
,
当t=
时,
=
.
当t=
时,
时,
=
﹣
=(1,2)﹣
=
.
∴向量
在
方向上的投影
=
= ![]()
【解析】(1)利用向量共线定理可得tanα,再利用同角三角函数基本关系式即可得出;(2)利用向量模的计算公式、二次函数的单调性、向量投影计算公式即可得出.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
,
(
).(1)求函数
的单调增区间;(2)当
时,记
,是否存在整数
,使得关于
的不等式
有解?若存在,请求出
的最小值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于数列{an},定义
为{an}的“优值”,现在已知某数列{an}的“优值”
,记数列{an﹣kn}的前n项和为Sn , 若Sn≤S5对任意的n∈N+恒成立,则实数k的最大值为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知平面内一动点
与两定点
和
连线的斜率之积等于
.(Ⅰ)求动点
的轨迹
的方程;(Ⅱ)设直线
:
(
)与轨迹
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
(
).(1)写出函数
的值域,单调区间(不必证明);(2)是否存在实数
使得
的定义域为
,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组
,第二组
,…,第五组
,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为
.
(Ⅰ)求
的值,并求这50名同学心率的平均值;(Ⅱ)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
参考公式:
,其中
心率小于60次/分
心率不小于60次/分
合计
体育生
20
艺术生
30
合计
50
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
的圆心在直线
上,且与直线
相切于点
.(1)求圆
方程;(2)是否存在过点
的直线
与圆
交于
两点,且
的面积是
(
为坐标原点),若存在,求出直线
的方程,若不存在,请说明理由.
相关试题