【题目】某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组
,第二组
,…,第五组
,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为
.
![]()
(Ⅰ)求
的值,并求这50名同学心率的平均值;
(Ⅱ)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中![]()
心率小于60次/分 | 心率不小于60次/分 | 合计 | |
体育生 | 20 | ||
艺术生 | 30 | ||
合计 | 50 |
参考答案:
【答案】(Ⅰ)
,
;(Ⅱ)见解析.
【解析】试题分析:(1)求出各组的频数,即可求a的值和50名同学的心率平均值.
(2)列出二联表,代入公式求
做出判断即可.
试题解析:
(Ⅰ)因为第二组数据的频率为
,故第二组的频数为
,所以第一组的频数为
,第三组的频数为20,第四组的频数为16,第五组的数为4.所以
,故
.
这50名同学的心率平均值为
.
(Ⅱ)由(Ⅰ)知,第一组和第二组的学生(即心率小于60次/分的学生)共10名,从而体育生有
名,故列联表补充如下.
心率小于60次/分 | 心率不小于60次/分 | 合计 | |
体育生 | 8 | 12 | 20 |
艺术生 | 2 | 28 | 30 |
合计 | 10 | 40 | 50 |
所以
,
故有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知平面内一动点
与两定点
和
连线的斜率之积等于
.(Ⅰ)求动点
的轨迹
的方程;(Ⅱ)设直线
:
(
)与轨迹
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知向量
=(1,2),
=(cosα,sinα),设
=
﹣t
(t为实数).
(1)t=1 时,若
∥
,求2cos2α﹣sin2α的值;
(2)若α=
,求|
|的最小值,并求出此时向量
在
方向上的投影. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
(
).(1)写出函数
的值域,单调区间(不必证明);(2)是否存在实数
使得
的定义域为
,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
的圆心在直线
上,且与直线
相切于点
.(1)求圆
方程;(2)是否存在过点
的直线
与圆
交于
两点,且
的面积是
(
为坐标原点),若存在,求出直线
的方程,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C的方程为
+
=1,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点;若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
是定义在
上的奇函数,且当
时,
,则对任意
,函数
的零点个数至多有( )A. 3个 B. 4个 C. 6个 D. 9个
相关试题