【题目】某市举行的“国际马拉松赛”,举办单位在活动推介晚会上进行嘉宾现场抽奖活动,抽奖盒中装有6个大小相同的小球,分别印有“快乐马拉松”和“美丽绿城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球(取出后不再放回),若抽到的两个球都印有“快乐马拉松”标志即可获奖.并停止取球;否则继续抽取,第一次取球就抽中获一等奖,第二次取球抽中获二等奖,第三次取球抽中获三等奖,没有抽中不获奖.活动开始后,一位参赛者问:“盒中有几个印有‘快乐马拉松’的小球?”主持人说:“我只知道第一次从盒中同时抽两球,不都是‘美丽绿城行’标志的概率是

(1)求盒中印有“快乐马拉松”小球的个数;

(2)若用表示这位参加者抽取的次数,求的分布列及期望.


参考答案:

【答案】(1);(2)详见解析.

【解析】试题分析:(1)运用古典概型的计算公式及对立事件的概率公式求解;(2)依据题设条件借助随机变量的分布列与数学期望公式进行计算求解:

试题解析:

解:(1)设印有“美丽绿城行”的球有个,同时抽两球不都是“美丽绿城行”标志为事件

则同时抽取两球都是“美丽绿城行”标志的概率是

由对立事件的概率:.

,解得.

(2)由已知,两种球各三个,故可能取值分别为1,2,3,

.

的分布列为:

所以.

关闭