【题目】观察下列等式:
(sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律,
(sin 2+(sin 2+(sin 2+…+(sin 2=


参考答案:

【答案】n(n+1)
【解析】解:观察下列等式:(sin 2+(sin 2= ×1×2;(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律(sin 2+(sin 2+(sin 2+…+(sin 2= ×n(n+1),
故答案为: n(n+1)
由题意可以直接得到答案.;本题考查了归纳推理的问题,关键是找到相对应的规律,属于基础题.

关闭