【题目】类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列一些性质,你认为比较恰当的是( )
①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
A. ① B. ②③ C. ①② D. ①②③
参考答案:
【答案】D
【解析】在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是:由平面几何中点的性质,类比推理空间几何中线的性质;由平面几何中线的性质,类比推理空间几何中面的性质;由平面几何中面的性质,类比推理空间几何中体的性质;或是将一个二维平面关系,类比推理为一个三维的立体关系,故类比平面内正三角形的"三边相等,三内角相等”的性质,推断:①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。都是恰当的,故选
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间
(单位:小时)与当天投篮命中率
之间的关系:时间

1
2
3
4
5
命中率

0.4
0.5
0.6
0.6
0.4
小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.
附:线性回归方程
中系数计算公式
,
, -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)求函数
的单调区间;(Ⅱ)若
,不等式
恒成立,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知曲线
在
处的切线方程为
.(1)求
的值;(2)若对任意
恒成立,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)在R上是单调递减的一次函数,且f(f(x))=4x-1.
(1)求f(x);
(2)求函数y=f(x)+x2-x在x∈[-1,2]上的最大值与最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数

(Ⅰ)设
,若
的图象与x轴恰有两个不同的交点,求实数a的取值集合.(Ⅱ)求函数
在区间
上的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.
组
号
年龄
访谈
人数
愿意
使用
1
[18,28)
4
4
2
[28,38)
9
9
3
[38,48)
16
15
4
[48,58)
15
12
5
[58,68)
6
2
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数
年龄低于48岁的人数
合计
愿意使用的人数
不愿意使用的人数
合计
参考公式:
,其中:n=a+b+c+d.P(k2≥k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
相关试题