【题目】设常数
使方程
在区间
上恰有三个解
且
,则实数
的值为( )
A.
B.
C.
D. ![]()
参考答案:
【答案】B
【解析】
解:分别作出y=cosx,x∈(
,3π)与y=m的图象,如图所示,结合图象可得则﹣1<m<0,故排除C,D,再分别令m=﹣
,m=﹣
,求出x1,x2,x3,验证x22=x1x3是否成立;
解:分别作出y=cosx,x∈(
,3π)与y=m的图象,如图所示,方程cosx=m在区间(
,3π)上恰有三个解x1,x2,x3(x1<x2<x3),则﹣1<m<0,故排除C,D,
当m=﹣
时,此时cosx=﹣
在区间(
,3π),
解得x1=
π,x2=
π,x3=
π,
则x22=
π2≠x1x3=
π2,故A错误,
当m=﹣
时,此时cosx=﹣
在区间(
,3π),
解得x1=
π,x2=
π,x3=
π,
则x22=
π2=x1x3=
π2,故B正确,
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
上的焦点为
,离心率为
.
(1)求椭圆方程;
(2)设过椭圆顶点
,斜率为
的直线交椭圆于另一点
,交
轴于点
,且
,
,
成等比数列,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三棱柱
中,侧面
为菱形,
.
(1)证明:
;(2)若
,求二面角
的正弦值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某运输公司有7辆可载
的
型卡车与4辆可载
的
型卡车,有9名驾驶员,建筑某段高速公路中,此公司承包了每天至少搬运
沥青的任务,已知每辆卡车每天往返的次数为
型车8次,
型车6次,每辆卡车每天往返的成本费为
型车160元,
型车252元,每天派出
型车和
型车各多少辆,公司所花的成本费最低? -
科目: 来源: 题型:
查看答案和解析>>【题目】解答
(1)在公比为2的等比数列{an}中,a2与a5的等差中项是9
.求a1的值;
(2)若函数y=a1sin(
φ),0<φ<π的一部分图象如图所示,M(﹣1,a1),N(3,﹣a1)为图象上的两点,设∠MON=θ,其中O为坐标原点,0<θ<π,求cos(θ﹣φ)的值. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
为偶函数,且函数
图象的两相邻对称轴间的距离为
.(1)求
的值;(2)求函数
的对称轴方程;(3)当
时,方程
有两个不同的实根,求m的取值范围。 -
科目: 来源: 题型:
查看答案和解析>>【题目】设椭圆
的左焦点为
,右顶点为
,离心率为
,已知点
是抛物线
的焦点,点
到抛物线准线的距离是
.(1)求椭圆
的方程和抛物线
的方程;(2)若
是抛物线
上的一点且在第一象限,满足
,直线
交椭圆于
两点,且
,当
的面积取得最大值时,求直线
的方程.
相关试题