【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大。某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.
组号 | 年龄 | 访谈人数 | 愿意使用 |
1 | [20,30) | 5 | 5 |
2 | [30.40) | 10 | 10 |
3 | [40.50) | 15 | 12 |
4 | [50.60) | 14 | 8 |
5 | [60,70) | 6 | 2 |
(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?
(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;
年龄不低于50岁的人数 | 年龄低于50岁的人数 | 合计 | |||||
愿意使用的人数 | |||||||
不愿意使用的人数 | |||||||
合计 |
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考答案:
【答案】(1)各组分别为5人,6人,4人;(2)
;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关.
【解析】试题分析:(1)三组一共有
人,抽取
人,故两个人抽一人,由此得到抽取的人数分别为
人.(2)利用列举法列举出所有可能性有
种,其中符合题意的有
种,故概率为
.(3)根据题意填写好表格后,计算
,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关.
试题解析:
解:(1)因为
,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.
(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:
共15个结果,其中至少有1人愿意选择此款“流量包”
共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率
.
(3)2×2列联表
年龄不低于50岁的人数 | 年龄低于50岁的人数 | 合计 | |
使用的人数 | 10 | 27 | 37 |
不愿意使用的人数 | 10 | 3 | 13 |
合计 | 20 | 30 | 50 |
∴![]()
∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}的前三项与数列{bn}的前三项相同,且a1+2a2+22a3+…+2n-1an=8n对任意n∈N*都成立,数列{bn+1-bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得(bk-ak)∈(0,1)?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC的三个内角A、B、C所对的边分别是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=
,求a+c的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=b·ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x);
(2)若不等式
-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.
(1)判断集合A={-1,1,2}是否为可倒数集;
(2)试写出一个含3个元素的可倒数集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关心的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄





人数
4
5
8
5
3
年龄





人数
6
7
3
5
4
经调查年龄在
,
的被调查者中赞成“延迟退休”的人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.(Ⅰ)求年龄在
的被调查者中选取的2人都赞成“延迟退休”的概率;(Ⅱ)若选中的4人中,不赞成“延迟退休”的人数为
,求随机变量
的分布列和数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于定义在
上的函数
,若存在距离为
的两条直线
和
,使得对任意
都有
恒成立,则称函数
有一个宽度为
的通道,给出下列函数:①
;②
;③
;④
.其中在区间
上通道宽度可以为1的函数的个数是( )A. 1 B. 2 C. 3 D. 4
相关试题