【题目】各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn=
,求数列{bn}的前n项和T.
参考答案:
【答案】
(1)解:∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan﹣p
∴2a1=2pa12+pa1﹣p,即2=2p+p﹣p,解得p=1
(2)解:2Sn=2an2+an﹣1,①
2Sn﹣1=2an﹣12+an﹣1﹣1,(n≥2),②
① ﹣②即得(an﹣an﹣1﹣
)(an+an﹣1)=0,
因为an+an﹣1≠0,所以an﹣an﹣1﹣
=0,
∴ ![]()
(3)解:2Sn=2an2+an﹣1=2×
,
∴Sn=
,
∴
=n2n
Tn=1×21+2×22+…+n2n③
又2Tn=1×22+2×23+…+(n﹣1)2n+n2n+1 ④
④﹣③Tn=﹣1×21﹣(22+23+…+2n)+n2n+1=(n﹣1)2n+1+2
∴Tn=(n﹣1)2n+1+2
【解析】(1)根据a1=1,对任意的n∈N*,有2Sn=2pan2+pan﹣p,令n=1,解方程即可求得结果;(2)由2Sn=2an2+an﹣1,知2Sn﹣1=2an﹣12+an﹣1﹣1,(n≥2),所以(an﹣an﹣1﹣1)(an+an﹣1)=0,由此能求出数列{an}的通项公式.(3)根据
求出数列{bn}的通项公式,利用错位相减法即可求得结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义域为R的函数f(x)=
是奇函数.
(1)求b的值;
(2)判断函数f(x)在R上的单调性并加以证明;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)=
+
的定义域为( )
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3} -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数F(x)=g(x)+h(x)=ex , 且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是( )
A.(﹣∞,2
]
B.(﹣∞,2
)
C.(﹣∞,2]
D.(﹣∞,2) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知点
是椭圆
的左、右顶点,
为左焦点,点
是椭圆上异于
的任意一点,直线
与过点
且垂直于
轴的直线
交于点
,直线
于点
.(1)求证:直线
与直线
的斜率之积为定值;(2)若直线
过焦点
,
,求实数
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=loga(x2﹣2ax)(a>0且a≠1)满足对任意的x1 , x2∈[3,4],且x1≠x2时,都有
>0成立,则实数a的取值范围是 -
科目: 来源: 题型:
查看答案和解析>>【题目】设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式
<0的解集为( )
A.(﹣1,0)∪(1,+∞)
B.(﹣∞,﹣1)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
相关试题