【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.
参考答案:
【答案】解:解法一:(Ⅰ)P=1﹣
=1﹣
=
,即该顾客中奖的概率为
. (Ⅱ)ξ的所有可能值为:0,10,20,50,60(元).
且P(ξ=0)=
=
,P(ξ=10)=
=
,
P(ξ=20)=
=
,P(ξ=50)=
=
,
P(ξ=60)=
= ![]()
故ξ有分布列:
ξ | 0 | 10 | 20 | 50 | 60 |
P |
|
|
|
|
|
从而期望Eξ=0×
+10×
+20×
+50×
+60×
=16.
解法二:
(Ⅰ)P=
=
=
,
(Ⅱ)ξ的分布列求法同解法一
由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值Eξ=2×8=16(元)
【解析】(1)先求中奖的对立事件“没中奖”的概率,求“没中奖”的概率是古典概型.(2)ξ的所有可能值为:0,10,20,50,60,用古典概型分别求概率,列出分布列,再求期望即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)求函数
的单调区间;(2)若关于
的不等式
恒成立,求整数
的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数f(x)的定义域为D,若x∈D,y∈D,使得f(y)=﹣f(x)成立,则称函数f(x)为“美丽函数”.下列所给出的五个函数: ①y=x2;②y=
;③f(x)=ln(2x+3);④y=2x+3;⑤y=2sin x﹣1.
其中是“美丽函数”的序号有 . -
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=
cos(
﹣2x)的单调递增区间是( )
A.[kπ﹣
,kπ+
](k∈Z)
B.[kπ﹣
,kπ)(k∈Z)
C.[kπ+
,kπ+
](k∈Z)
D.[kπ+
,kπ+π](k∈Z) -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2sin Acos C=2sin B-sin C.
(1)求A的大小;
(2)在锐角三角形ABC中,
,求c+b的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的离心率为
,点
,
,
分别为椭圆的右顶点、上顶点和右焦点,且
.(1)求椭圆
的方程;(2)已知直线
:
被圆
:
所截得的弦长为
,若直线
与椭圆
交于
,
两点,求
面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是
,从B中摸出一个红球的概率为p.
(1)从A中又放回的摸球,每次摸出一个,共摸5次 ①恰好有3次摸到红球的概率;
②第一次、第三次、第五次摸到红球的概率.
(2)若A、B两个袋子中的球之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是
,求p的值.
相关试题