【题目】如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2
, AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.![]()
参考答案:
【答案】解:四边形ABCD绕AD旋转一周所成的
几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面
=πr22+π(r1+r2)l2+πr1l1
=![]()
=25π+35π+4
π
=60π+4
π.
体积V=V圆台﹣V圆锥
=
[25π+
+4π]×4﹣
×2π×2×2
=
×39π×4﹣
×8π
=
.
所求表面积为:60π+4
π,体积为:
.![]()
【解析】旋转后的几何体是圆台除去一个倒放的圆锥,根据题目所给数据,求出圆台的侧面积、圆锥的侧面积、圆台的底面积,即可求出几何体的表面积.求出圆台体积减去圆锥体积,即可得到几何体的体积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值
,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出
的值为 ( )(参考数据:
)
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知以点C(t,
) (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y﹣4=0与圆C交于点M、N,若OM=ON,求圆C的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形
是正四棱柱
的一个截面,此截面与棱
交于点
,
,其中
分别为棱
上一点.(1)证明:平面
平面
;(2)
为线段
上一点,若四面体
与四棱锥
的体积相等,求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线
关于直线
对称的直线为
,直线
与椭圆
分别交于点
、
和
、
,记直线
的斜率为
.(Ⅰ)求
的值;(Ⅱ)当
变化时,试问直线
是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.(1)求
的方程;(2)若动点
在直线
上,过
作直线交椭圆
于
两点,使得
,再过
作直线
,证明:直线
恒过定点,并求出该定点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.(1)若
的坐标为
,求
的值;(2)设线段
的中点为
,点
的坐标为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
两点,求
的取值范围.
相关试题