【题目】已知以点C(t,
) (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y﹣4=0与圆C交于点M、N,若OM=ON,求圆C的方程.
参考答案:
【答案】解:(1)证明:由题设知,圆C的方程为(x﹣t)2+(y﹣
)2=t2+
,
化简得x2﹣2tx+y2﹣
y=0.
当y=0时,x=0或2t,则A(2t,0);
当x=0时,y=0或
,则B(0,
),
∴S△AOB=
OAOB=
|2t||
|=4为定值.
(2)解∵OM=ON,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,
∴C、H、O三点共线,KMN=﹣2,则直线OC的斜率k=
=
=
,
∴t=2或t=﹣2.
∴圆心为C(2,1)或C(﹣2,﹣1),
∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5.
由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,
此时不满足直线与圆相交,故舍去,
∴所求的圆C的方程为(x﹣2)2+(y﹣1)2=5.
【解析】(1)设出圆C的方程,求得A、B的坐标,再根据S△AOB=
OAOB,计算可得结论.
(2)设MN的中点为H,则CH⊥MN,根据C、H、O三点共线,KMN=﹣2,由直线OC的斜率k=
=
=
, 求得t的值,可得所求的圆C的方程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=﹣x2+ax(a∈R).
(1)当a=3时,求函数f(x)在[
,2]上的最大值和最小值;
(2)当函数f(x)在(
,2)单调时,求a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
,
.(Ⅰ)求函数
的单调区间;(Ⅱ)记过函数
两个极值点
的直线的斜率为
,问函数
是否存在零点,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值
,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出
的值为 ( )(参考数据:
)
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形
是正四棱柱
的一个截面,此截面与棱
交于点
,
,其中
分别为棱
上一点.(1)证明:平面
平面
;(2)
为线段
上一点,若四面体
与四棱锥
的体积相等,求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2
, AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线
关于直线
对称的直线为
,直线
与椭圆
分别交于点
、
和
、
,记直线
的斜率为
.(Ⅰ)求
的值;(Ⅱ)当
变化时,试问直线
是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
相关试题