【题目】已知函数
是定义在
上的奇函数,且当
时,
,则对任意
,函数
的零点个数至多有( )
A. 3个 B. 4个 C. 6个 D. 9个
参考答案:
【答案】A
【解析】当
时
,由此可知
在
上单调递减,在
上单调递增,
,
且
,数
是定义在
上的奇函数,
,而
时,
,所以
的图象如图,令
,则
,由图可知,当
时方程
至多3个根,当
时方程
没有根,而对任意
,
至多有一个根
,从而函数
的零点个数至多有3个.
![]()
点晴:本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组
,第二组
,…,第五组
,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为
.
(Ⅰ)求
的值,并求这50名同学心率的平均值;(Ⅱ)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
参考公式:
,其中
心率小于60次/分
心率不小于60次/分
合计
体育生
20
艺术生
30
合计
50
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
的圆心在直线
上,且与直线
相切于点
.(1)求圆
方程;(2)是否存在过点
的直线
与圆
交于
两点,且
的面积是
(
为坐标原点),若存在,求出直线
的方程,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C的方程为
+
=1,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点;若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知过原点的动直线
与圆
相交于不同的两点
.(1)求线段
的中点
的轨迹
的方程;(2)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
(
)的离心率为
,
分别是它的左、右焦点,且存在直线
,使
关于
的对称点恰好是圆
(
)的一条直线的两个端点.(1)求椭圆
的方程;(2)设直线
与抛物线
(
)相交于
两点,射线
,
与椭圆
分别相交于点
,试探究:是否存在数集
,当且仅当
时,总存在
,使点
在以线段
为直径的圆内?若存在,求出数集
;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=

(1)求边c的长;
(2)求角B的大小.
相关试题