【题目】如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为
,雨速沿E移动方向的分速度为
。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与
×S成正比,比例系数为
;(2)其它面的淋雨量之和,其值为
,记
为E移动过程中的总淋雨量,当移动距离d=100,面积S=
时。
![]()
(1)写出
的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度
,使总淋雨量
最少。
参考答案:
【答案】(1)![]()
(2)当
时, ![]()
【解析】(1)由题意知,E移动时单位时间内的淋雨量为
,
故
.
(2)由(1)知,当
时, ![]()
当
时, ![]()
故
。
(1)当
时,
是关于
的减函数.故当
时,
。
(2) 当
时,在
上,
是关于
的减函数;在
上,
是关于
的增函数;故当
时,
。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市春节期间7家超市的广告费支出
(万元)和销售额
(万元)数据如下:超市
A
B
C
D
E
F
G
广告费支出

1
2
4
6
11
13
19
销售额

19
32
40
44
52
53
54
(1)若用线性回归模型拟合
与
的关系,求
关于
的线性回归方程;(2)用二次函数回归模型拟合
与
的关系,可得回归方程:
,经计算二次函数回归模型和线性回归模型的
分别约为
和
,请用
说明选择哪个回归模型更合适,并用此模型预测
超市广告费支出为3万元时的销售额.参数数据及公式:
,
,
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为抛物线
上一个动点,
为圆
上一个动点,那么点
到点
的距离与点
到抛物线的准线距离之和的最小值是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形
中,
,
,
,四边形
为矩形,平面
平面
,
.
(1)求证:
平面
;(2)点
在线段
上运动,设平面
与平面
所成二面角的平面角为
,试求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】5名男生4名女生站成一排,求满足下列条件的排法:
(1)女生都不相邻有多少种排法?
(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?
(3)男甲不在首位,男乙不在末位,有多少种排法?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知函数y=lg(x2+2x+a)的定义域为R,求实数a的取值范围;
(2)已知函数f(x)=lg[(a2-1)x2+(2a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=2sin(x-
)-
,现将f(x)的图象向左平移
个单位长度,再向上平移
个单位长度,得到函数g(x)的图象.(1)求f(
)+g(
)的值;(2)若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且当x=B时,g(x)取得最大值,求b的取值范围.
相关试题