【题目】某市春节期间7家超市的广告费支出
(万元)和销售额
(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合
与
的关系,求
关于
的线性回归方程;
(2)用二次函数回归模型拟合
与
的关系,可得回归方程:
,
经计算二次函数回归模型和线性回归模型的
分别约为
和
,请用
说明选择哪个回归模型更合适,并用此模型预测
超市广告费支出为3万元时的销售额.
参数数据及公式:
,
,
.
参考答案:
【答案】(1)
;(2)二次函数回归模型更好,预测值为
万元.
【解析】试题分析:(1)代入公式可求得
的值,由此可得线性回归方程;(2)比较
的值,可知二次函数回归模型更合适;将
代入二次函数回归模型可得销售额。
试题解析:
(1)![]()
![]()
所以,
关于
的线性回归方程是![]()
(2)∵
,∴二次函数回归模型更合适.
当
万元时,预测
超市销售额为
万元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
:
过椭圆
:
(
)的短轴端点,
,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.(Ⅰ)求椭圆
的方程;(Ⅱ)过点
作圆
的一条切线交椭圆
于
,
两点,求
的面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的离心率
,左顶点为
.(1)求椭圆
的方程; (2)已知
为坐标原点,
是椭圆
上的两点,连接
的直线平行
交
轴于点
,证明:
成等比数列. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
为抛物线
上一个动点,
为圆
上一个动点,那么点
到点
的距离与点
到抛物线的准线距离之和的最小值是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形
中,
,
,
,四边形
为矩形,平面
平面
,
.
(1)求证:
平面
;(2)点
在线段
上运动,设平面
与平面
所成二面角的平面角为
,试求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为
,雨速沿E移动方向的分速度为
。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与
×S成正比,比例系数为
;(2)其它面的淋雨量之和,其值为
,记
为E移动过程中的总淋雨量,当移动距离d=100,面积S=
时。
(1)写出
的表达式(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度
,使总淋雨量
最少。
相关试题