【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,
,AB=2CD=8.
![]()
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】试题分析:
(1)计算得
,又平面
平面
平面
平面
平面
;(2)当
点位于线段
靠近
点的三等分点处时,
平面
.先证四边形
是梯形.再证
平面
.
试题解析:(1)在△ABD中,
∵AD=4,
,AB=8,∴AD2+BD2=AB2.
∴AD⊥BD.
又∵平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,BD平面ABCD,
∴BD⊥平面PAD.又BD平面MBD,
∴平面MBD⊥平面PAD.
(2)当M点位于线段PC靠近C点的三等分点处时,PA∥平面MBD.
证明如下:连接AC,交BD于点N,连接MN.
∵AB∥DC,所以四边形ABCD是梯形.
∵AB=2CD,∴CN:NA=1:2.
又∵CM:MP=1:2,
∴CN:NA=CM:MP,∴PA∥MN.
∵MN平面MBD,∴PA∥平面MBD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】汽车厂生产
三类轿车,每类轿车均有舒适型和标准型两类型号,某月的产量如下表:(单位:辆). 按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有
类轿车10辆.
(1)求
的值;(2)用分层抽样的方法在
类轿车中抽取一个容量为5的样本,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从
类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)当
时,求曲线
在
处的切线方程;(2)讨论方程
根的个数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:

(1)求
的值及该校学生从家到校的平均时间;(2)若该校因学生寝室不足,只能容纳全校
的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,
,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克),如图是测量数据的茎叶图:

规定:当产品中的此种元素含量不小于16毫克时,该产品为优等品.
(1)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数
的分布列及其数学期望
;(2)从甲厂的10件样品中有放回地逐个随机抽取3件,也从乙厂的10件样品中有放回地逐个随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
相关试题