【题目】已知等比数列
满足,
,
.
求数列
的通项公式;
设
,求
的前n项和为
.
参考答案:
【答案】(1)
(2)![]()
【解析】
试题分析:(1)根据等比数列的首项和公比求通项公式;一般转化为首项和公比列方程求解,注意题中限制条件;(2)先求{
}的通项公式然后再求和,除此外还会有观察数列的特点形式,看使用什么方法求和.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源和目的.(3)在做题时注意观察式子特点选择有关公式和性质进行化简,这样给做题带来方便,掌握常见求和方法,如分组转化求和,裂项法,错位相减.
试题解析:1)设数列{
}的首项为
,公比为
,所以
,所以
,
所以![]()
(2)因为
,所以数列{
}的前
项和
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】雾霾大气严重影响人们的生活,某科技公司拟投资开发新型节能环保产品,策划部制定投资计划时,不仅要考虑可能获得的盈利,而且还要考虑可能出现的亏损,经过市场调查,公司打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为
和
,可能的最大亏损率分别为
和
,投资人计划投资金额不超过9万元,要求确保可能的资金亏损不超过
万元.
Ⅰ
若投资人用x万元投资甲项目,y万元投资乙项目,试写出x,y所满足的条件,并在直角坐标系内作出表示x,y范围的图形.
Ⅱ
根据
的规划,投资公司对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=xlnx的图象上有A、B两点,其横坐标为x1 , x2(0<x1<x2<1)且满足f(x1)=f(x2),若k=5(
+
),且k为整数时,则k的值为( )(参考数据:e≈2.72)
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在矩形ABCD中,
,
沿对角线将
折起,使点C移到
点,且C点在平面ABD的射影O恰在AB上.(1)求证:
平面ACD;
求直线AB与平面
D所成角的正弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
:
的左右焦点分别为
、
,上顶点为B,O为坐标原点,且向量
与
的夹角为
.
求椭圆
的方程;
设
,点P是椭圆
上的动点,求
的最大值和最小值;
设不经过点B的直线l与椭圆
相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,命题
方程
表示焦点在
轴上的椭圆,命题
方程
表示双曲线.(1)若命题
是真命题,求实数
的范围;(2)若命题“
或
”为真命题,“
且
”是假命题,求实数
的范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的是自动通风设施
该设施的下部ABCD是等腰梯形,其中
米,高
米,
米
上部CmD是个半圆,固定点E为CD的中点
是由电脑控制其形状变化的三角通风窗
阴影部分均不通风
,MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆.
设MN与AB之间的距离为x米,试将三角通风窗
的通风面积
平方米
表示成关于x的函数
;
当MN与AB之间的距离为多少米时,三角通风窗
的通风面积最大?求出这个最大面积.
相关试题