【题目】已知
为函数
图象上一点,
为坐标原点,记直线
的斜率
.
(1)若函数
在区间
上存在极值,求实数
的取值范围;
(2)当
时,不等式
恒成立,求实数
的取值范围;
(3)求证: ![]()
参考答案:
【答案】(1)实数
的取值范围是
;(2)实数
的取值范围是
;(3)详见解析.
【解析】试题分析:(1)先利用导数求出函数
的解析式,并利用导数求出函数
的极值点,并将极值点限制在区间
内,得出有关
的不等式,求解出实数
的取值范围;(2)利用参数分离法将问题
在区间
上恒成立转化为不等式
在区间
上恒成立,构造新函数
,从而将问题转化为
,借助导数求函数
的最小值,从而得到实数
的取值范围;(3)取
,由(2)中的结论
,即
在
上恒成立,从而得到
在
上恒成立,,令
,代入上述不等式得到
,结合累加法即可证明不等式
.
试题解析:(1)由题意
,
1分
所以
2分
当
时,
;当
时,
.
所以
在
上单调递增,在
上单调递减,
故
在
处取得极大值. 3分
因为函数
在区间
(其中
)上存在极值,
所以
,得
.即实数
的取值范围是
. 4分
(2)由
得
,令
,
则
. 6分
令
,则
,
因为
所以
,故
在
上单调递增. 7分
所以
,从而![]()
在
上单调递增, ![]()
所以实数
的取值范围是
. 9分
(3)由(2) 知
恒成立,
即
11分
令
则
, 12分
所以
,
, ,
.
将以上
个式子相加得: ![]()
,
故
. 14分
(解答题的其他解法可酌情给分)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.

(1)求证:直线MF∥平面ABCD;
(2)求证:平面AFC1⊥平面ACC1A1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
定义域为
,对任意
都有
,且当
时,
.(1)试判断
的单调性,并证明;(2)若
,①求
的值;②求实数
的取值范围,使得方程
有负实数根. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在直角坐标系xOy中,圆C的参数方程为
(θ为参数),直线l经过定点P(2,3),倾斜角为
.(Ⅰ)写出直线l的参数方程和圆C的标准方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|·|PB|的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校要用甲、乙、丙三辆校车把教职工从老校区接到校本部,已知从老校区到校本部有两条公路,校车走公路①时堵车的概率为
,校车走公路②时堵车的概率为p.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆校车是否堵车相互之间没有影响.(1)若三辆校车中恰有一辆校车被堵的概率为
,求走公路②堵车的概率;(2)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
,
,
是棱
的中点.
(Ⅰ)求证:
平面
;(Ⅱ)求平面
与平面
所成的二面角的余弦值;(Ⅲ)设点
是直线
上的动点,
与平面
所成的角为
,求
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
,
分别为
的中点,点
在线段
上.(Ⅰ)求证:
平面
; (Ⅱ)如果直线
与平面
所成的角和直线
与平面
所成的角相等,求
的值.
相关试题