【题目】已知椭圆
经过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆上的点,直线
与
(
为坐标原点)的斜率之积为
.若动点
满足
,试探究是否存在两个定点
,使得
为定值?若存在,求
的坐标;若不存在,请说明理由.
参考答案:
【答案】(Ⅰ)
; (Ⅱ)见解析.
【解析】试题分析:(Ⅰ)利用椭圆的离心率计算公式和点在椭圆上列方程组求解即可得出.
(Ⅱ)利用向量的坐标运算、点在椭圆上满足椭圆的方程、斜率计算公式及其椭圆的定义即可得出.
试题解析:
(Ⅰ)∵
∴![]()
又∵椭圆
经过点
∴![]()
解得:
,![]()
所以椭圆
的方程为
.
(Ⅱ)设
,
,
,则由
得
即
,
,
因为点
在椭圆
上,
所以
,![]()
故
![]()
![]()
![]()
设
,
分别为直线
与
的斜率,由题意知,
,因此![]()
所以
,
所以点
是椭圆
上的点,
所以由椭圆的定义知存在点
,满足
为定值
又因为
,
所以
坐标分别为
、
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃,及“凑够一撮人就可以走了,和红绿灯无关”,某校研究性学习小组对全校学生按“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”等三种形式进行调查获得下表数据:
跟从别人闯红灯
从不闯红灯
带头闯红灯
男生
980
410
60
女生
340
150
60
用分层抽样的方法,从所有被调查的人中抽取一个容量为
的样本,其中在“跟从别人闯红灯”的人中抽取了66人,(Ⅰ) 求
的值;(Ⅱ)在所抽取的“带头闯红灯”的人中,任选取2人参加星期天社区组织的“文明交通”宣传活动,求这2人中至少有1人是女生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四棱锥
中,底面
是直角梯形,
,
,
,侧面
底面
,且
是以
为底的等腰三角形.(Ⅰ)证明:

(Ⅱ)若四棱锥
的体积等于
.问:是否存在过点
的平面
分别交
,
于点
,使得平面
平面
?若存在,求出
的面积;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(Ⅰ)若
恒成立,求
的取值范围;(Ⅱ)设
,
,(
为自然对数的底数).是否存在常数
,使
恒成立,若存在,求出
的取值范围;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现从中随机抽取100人的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有
.(Ⅰ)若在该样本中,数学成绩优秀率是30%,求
的值;(Ⅱ)已知
,求数学成绩为优秀的人数比及格的人数少的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】线段AB的两端在直二面角α-l-β的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是( )

A. 30° B. 45°
C. 60° D. 75°
-
科目: 来源: 题型:
查看答案和解析>>【题目】设
,曲线
在点
处的切线与直线
垂直.(1)求
的值;(2)若对于任意的
,
恒成立,求
的取值范围;(3)求证:
.
相关试题