【题目】定义在R上的奇函数f(x),当x>0时,f(x)=x﹣2
(1)求函数f(x)的解析式;
(2)求不等式f(x)<2的解集.
参考答案:
【答案】
(1)解:由题意知:f(﹣0)=﹣f(0)=f(0),f(0)=0;
当x<0时,则﹣x>0,
因为当x>0时,f(x)=x﹣2,
所以f(﹣x)=﹣x﹣2,
又因为f(x)是定义在R上的奇函数,
所以f(﹣x)=﹣f(x),
所以f(x)=x+2,
所以f(x)的表达式为:f(x)= ![]()
(2)解:x<0时,x+2<2,∴x<0;
x=0,符合题意;
x>0时,x﹣2<2,∴x<4,∴0<x<4.
∴不等式的解集为(﹣∞,4)
【解析】(1)先根据f(x)是定义在R上的奇函数,得到f(0)=0,再设x<0时,则﹣x>0,结合题意得到f(﹣x)=﹣x﹣2,然后利用函数的奇偶性进行化简,进而得到函数的解析式.(2)利用(1)的结论,即可求不等式f(x)<2的解集.
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数f(x)=ax2+bx+c和一次函数g(x)=﹣bx,其中a,b,c∈R且满足a>b>c,f(1)=0.
(1)证明:函数f(x)与g(x)的图象交于不同的两点;
(2)若函数F(x)=f(x)﹣g(x)在[2,3]上的最小值为9,最大值为21,试求a,b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)已知f(x)是偶函数,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acosB+bcosA=csinC,S=
(b2+c2﹣a2),则∠B=( )
A.90°
B.60°
C.45°
D.30° -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x﹣alnx,(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)设g(x)=﹣
,若不等式f(x)>g(x)对任意x∈[1,e]恒成立,求a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知y=
x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值是( )
A.b<﹣1或b>2
B.b≤﹣2或b≥2
C.﹣1<b<2
D.﹣1≤b≤2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知椭圆
:
,其左右焦点为
及
,过点
的直线交椭圆
于
,
两点,线段
的中点为
,
的中垂线与
轴和
轴分别交于
,
两点,且
、
、
构成等差数列.
(1)求椭圆
的方程;(2)记
的面积为
,
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由.
相关试题