【题目】已知点P(2,﹣1).
(Ⅰ)求过P点且与原点距离为2的直线l的方程;
(Ⅱ)求过P点且与两坐标轴截距相等的直线l的方程.
参考答案:
【答案】解:(Ⅰ)过P(2,﹣1)且垂直于x轴的直线满足条件,
此时l的斜率不存在,其方程为x=2,
若斜率存在,则设l的方程为y+1=k(x﹣2),
即kx﹣y﹣2k﹣1=0.由d=2,得
,
解得
∴3x﹣4y﹣10=0,
综上所求直线方程为x=2或3x﹣4y﹣10=0;
(Ⅱ)当直线过原点时,满足题意,其方程为x+2y=0,
当直线不过原点时,斜率k=﹣1,其方程为∴x+y﹣1=0,
综上所求直线方程为x+2y=0或x+y﹣1=0
【解析】(Ⅰ)通过讨论直线l的斜率是否存在,求出直线方程即可;(Ⅱ)通过讨论直线是否过原点,求出直线方程即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方体ABCD﹣A'B'C'D'中,点P在线段AD'上,且AP≤
AD'则异面直线CP与BA'所成角θ的取值范围是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】设点Pi(xi , yi)在直线li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥
恒成立,则
+
= . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}的前n项和为Sn , 满足3an﹣2Sn﹣1=0.
(1)求数列{an}的通项公式;
(2)bn=
,数列{bn}的前n项和为Tn , 求f(n)=
(n∈N+)的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且
,
(1)求角B的大小;
(2)若
,求△ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.

(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若对一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.
相关试题