【题目】已知函数f(x)=x-
+a(2-ln x)(a>0),求函数f(x)的单调区间与极值点.
参考答案:
【答案】见解析
【解析】f(x)的定义域是(0,+∞),f′(x)=1+
-
=
.
设g(x)=x2-ax+2,对于二次方程g(x)=0, 判别式Δ=a2-8.
①当Δ=a2-8<0,即0<a<2
时,对一切x>0都有f′(x)>0,此时f(x)在(0,+∞)上是增函数,无极值点.
②当Δ=a2-8=0,即a=2
时,仅对x=
有f′(x)=0,对其余的x>0都有f′(x)>0,此时f(x)在(0,+∞)上也是增函数,无极值点.
③当Δ=a2-8>0,即a>2
时,方程g(x)=0有两个不同的实数根x1=
,x2=
,0<x1<x2.
当x变化时,f′(x),f(x)的变化情况如下表:
x | (0,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | f(x1) | f(x2) |
此时f(x)在(0,
)上是增加的,在(
,
)上是减少的,在(
,+∞)上是增加的.x1=
是函数的极大值点,x2=
是函数的极小值点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】【2017兰州高考模拟】.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
。
(1)求证:平面EBC⊥平面EBD;
(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】社会调查人员希望从对人群的随机抽样调查中得到对他们所提问题诚实的回答,但是被采访者常常不愿意如实做出应答.
1965年Stanley·L.Warner发明了一种应用概率知识来消除这种不愿意情绪的方法.Warner的随机化应答方法要求人们随机地回答所提问题中的一个,而不必告诉采访者回答的是哪个问题,两个问题中有一个是敏感的或者是令人为难的,另一个是无关紧要的,这样应答者将乐意如实地回答问题,因为只有他知道自己回答的是哪个问题.
假如在调查运动员服用兴奋剂情况的时候,无关紧要的问题是:你的身份证号码的尾数是奇数吗;敏感的问题是:你服用过兴奋剂吗.然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.
例如我们把这个方法用于200个被调查的运动员,得到56个“是”的回答,请你估计这群运动员中大约有百分之几的人服用过兴奋剂.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(Ⅰ)根据茎叶图中的数据完成
列联表,并判断能否有
的把握认为孩子的幸福感强与是否是留守儿童有关? 
(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式:
; 附表:
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知实数
,
满足
,实数
,
满足
,则
的最小值为__________. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(Ⅰ)若函数
有极值,求实数
的取值范围; (Ⅱ)当
有两个极值点(记为
和
)时,求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
.(a>0)(1)若a=1,证明:y=f(x)在R上单调递减;
(2)当a>1时,讨论f(x)零点的个数.
相关试题