【题目】某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
⑴写出
列联表;⑵判断产品是否合格与设备改造是否有关,说明理由.
附:
,
|
|
|
|
|
|
|
|
![]()
参考答案:
【答案】(1)答案见解析;(2)答案见解析.
【解析】试题分析:(1)由题意知设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件,做出合计的五个数据,填入表格,得到列联表.
(2)根据列联表中的数据,做出观测值,把所得的观测值同临界值进行比较,得到有99.9%的把握认为产品是否合格与设备改造有关.
试题解析:(1)由已知数据得
合格品 | 不合格品 | 合计 | |
设备改造后 | 65 | 30 | 95 |
设备改造前 | 36 | 49 | 85 |
合计 | 101 | 79 | 180 |
(2)根据列联表中的数据,
的观测值为
.
由于
,所以在犯错误的概率不超过0.001的前提下认为产品是否合格与设备改造有关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图所示的茎叶图.
(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.
①估计池塘中鱼的质量在3千克以上(含3千克)的条数;
②若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7条,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.


-
科目: 来源: 题型:
查看答案和解析>>【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )

A. ①② B. ①③ C. ②④ D. ①④
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义域为
的函数
是奇函数.(1)求
的值; (2)证明:
为
上的增函数;(3)若对任意的
,不等式
恒成立,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在棱长均为4的三棱柱
中,
分别是
和
的中点.
(1)求证:
平面
(2)若平面
平面
,求三棱锥
的体积. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分为14分)已知定义域为R的函数
是奇函数.(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】经销商经销某种农产品,在一个销售季度内,每售出
该产品获利润500元,未售出的产品,每
亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了
该农产品.以
(
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将
表示为
的函数;(Ⅱ)根据直方图估计利润
不少于57000元的概率.
相关试题