【题目】设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
参考答案:
【答案】
(1)解:令x=0,得y=a﹣2. 令y=0,得
(a≠﹣1).
∵l在两坐标轴上的截距相等,∴
,解之,得a=2或a=0.
∴所求的直线l方程为3x+y=0或x+y+2=0
(2)解:直线l的方程可化为 y=﹣(a+1)x+a﹣2.∵l不过第二象限,
∴
,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1]
【解析】(1)先求出直线l在两坐标轴上的截距,再利用 l在两坐标轴上的截距相等 建立方程,解方程求出a的值,从而得到所求的直线l方程.(2)把直线l的方程可化为 y=﹣(a+1)x+a﹣2,由题意得
,解不等式组求得a的范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=
.
(1)求△ABC的面积;
(2)求sin(C﹣A)的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圆:x2+y2+2x﹣4=0相切,则a的取值范围是( )
A.a>7或a<﹣3
B.
C.﹣3≤a≤一
或
≤a≤7
D.a≥7或a≤﹣3 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
,0)
(1)求双曲线C的方程;
(2)若直线l:y=kx+
与双曲线C恒有两个不同的交点A和B,且
>2(其中O为原点).求k的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.(1)求
的普通方程和
的倾斜角;(2)设点
和
交于
两点,求
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,椭圆E:
的左焦点为F1 , 右焦点为F2 , 离心率e=
.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图为一简单组合体,其底面 ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.

(1)求证:BE∥平面PDA;
(2)求四棱锥B﹣CEPD的体积.
相关试题