【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.
(1)根据已知条件与等高条形图完成下面的
列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?
![]()
注:
,其中
.
![]()
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为
,试求
的分布列及数学期望
.
![]()
参考答案:
【答案】(1)答案见解析;(2)答案见解析.
【解析】试题分析:(1)由等高条形图,完成
列联表,由卡方公式求得
,可得我们没有95%的把握认为“赞成高考改革方案与城乡户口有关”。(2)
用样本的频率估计概率,随机在全省不赞成高考改革的家长中抽中城镇户口家长的概率为0.6.抽中农村户口家长的概率为0.4,所以满足二项分布,由二项分布公式写出
的分布列及数学期望。
试题解析:(1)完成
列联表,如下:
![]()
代入公式,得
观测值:
.
∴我们没有95%的把握认为“赞成高考改革方案与城乡户口有关”.
(2)用样本的频率估计概率,随机在全省不赞成高考改革的家长中抽中城镇户口家长的概率为0.6.
抽中农村户口家长的概率为0.4,
的可能取值为0,1,2,3.
,
,
,
.
∴
的分布列为:
![]()
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】求和:Sn=
+
+…+
,并用数学归纳法证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期
12月1日
12月2日
12月3日
12月4日
12月5日
温差
(°C)10
11
13
12
8
发芽数
(颗)23
25
30
26
16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:
) -
科目: 来源: 题型:
查看答案和解析>>【题目】某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
用煤(吨)
用电(千瓦)
产值(万元)
甲产品
3
50
12
乙产品
7
20
8
但国家每天分配给该厂的煤、电有限,每天供煤至多47吨,供电至多300千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,
.(l)求
的单调区间;(2)若函数
在区间
内存在唯一的极值点,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知三棱柱ABC﹣A1B1C1的直观图和三视图如图所示,E是棱CC1上一点.

(1)若CE=2EC1 , 求三棱锥E﹣ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】某基建公司年初以100万元购进一辆挖掘机,以每年22万元的价格出租给工程队.基建公司负责挖掘机的维护,第一年维护费为2万元,随着机器磨损,以后每年的维护费比上一年多2万元,同时该机器第x(x∈N* , x≤16)年末可以以(80﹣5x)万元的价格出售.
(1)写出基建公司到第x年末所得总利润y(万元)关于x(年)的函数解析式,并求其最大值;
(2)为使经济效益最大化,即年平均利润最大,基建公司应在第几年末出售挖掘机?说明理由.
相关试题