【题目】某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对
表示“甲在
号车站下车,乙在
号车站下车”
(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;
(Ⅱ)求甲、乙两人同在第3号车站下车的概率;
(Ⅲ)求甲、乙两人在不同的车站下车的概率.
参考答案:
【答案】(Ⅰ)(2,2)、(2,3)、(2,4)、(3,2)、
(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(Ⅱ)
(Ⅲ)![]()
【解析】
(Ⅰ) 甲、乙两人下车的所有可能的结果为
(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)
(Ⅱ)设甲、乙两人同在第3号车站下车的的事件为A,则![]()
(Ⅲ) 设甲、乙两人在不同的车站下车的事件为B,则![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如下图:

甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在
内的概率;(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。
甲校
乙校
总计
优秀
不优秀
总计

参考数据
P(K2≥k0)
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.706
span>3.841
5.024
6.635
7.879
10.828
-
科目: 来源: 题型:
查看答案和解析>>【题目】从高三抽出
名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:
(1)这
名学生成绩的众数与中位数;(2)这
名学生的平均成绩. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
(其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为
.
(1)求y=f(x)的单调递增区间;
(2)在△ABC中角A、B、C的对边分别是a,b,c满足(2b﹣a)cosC=ccosA,则f(B)恰是f(x)的最大值,试判断△ABC的形状. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知
是定义域
上的单调递增函数(1)求证:命题“设
,若
,则
”是真命题(2)解关于
的不等式
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,其中
为常数.(1)若
,求函数
的极值;(2)若函数
在
上单调递增,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格,.经长期监测发现,该仪器第一道工序检查合格的概率为
,第二道工序检查合格的概率为
,已知该厂三个生产小组分别每月负责生产一台这种仪器.
(1)求本月恰有两台仪器完全合格的概率;
(2)若生产一台仪器合格可盈利5万元,不合格则要亏损1万元,记该厂每月的赢利额为ξ,求ξ的分布列和每月的盈利期望.
相关试题