【题目】如图,在△ABC中,AC=2,BC=1,
. ![]()
(1)求AB的值;
(2)求sin(2A+C)的值.
参考答案:
【答案】
(1)解:由余弦定理,AB2=AC2+BC2﹣2ACBCcosC=
.
那么, ![]()
(2)解:解:由
,且0<C<π,
得
.由正弦定理,
,
解得
.
所以,
.
由倍角公式
,
且
,
故 ![]()
【解析】(1)利用余弦定理把AC=2,BC=1,
.即可求得AB.(2)由cosC求得sinC,在由正弦定理求得sinA,进而根据同角三角函数的基本关系求得cosA,用倍角公式求得sin2A和cos2A,进而利用两角和公式求得答案.
【考点精析】利用两角和与差的正弦公式和二倍角的余弦公式对题目进行判断即可得到答案,需要熟知两角和与差的正弦公式:
;二倍角的余弦公式:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】等比数列{an}中,a1=2,a4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若a3 , a5分别为等差数列{bn}的第4项和第16项,试求数列{bn}的前项和Sn . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知向量
=(1,sinx),
=(cos(2x+
),sinx),函数f(x)=
﹣
cos2x
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈[0,
]时,求函数f(x)的值域. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,直线
.(1)若直线
与曲线
相切,求切点横坐标的值;(2)若函数
,求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知球内接四棱锥
的高为
相交于
,球的表面积为
,若
为
中点.(1)求异面直线
和
所成角的余弦值;(2)求点
到平面
的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】微信运动和运动手环的普及,增强了人民运动的积极性,每天一万步称为一种健康时尚,某中学在全校范围内内积极倡导和督促师生开展“每天一万步”活动,经过几个月的扎实落地工作后,学校想了解全校师生每天一万步的情况,学校界定一人一天走路不足
千步为不健康生活方式,不少于
千步为超健康生活方式者,其他为一般生活方式者,学校委托数学组调查,数学组采用分层抽样的办法去估计全校师生的情况,结合实际及便于分层抽样,认定全校教师人数为
人,高一学生人数为
人,高二学生人数
人,高三学生人数
,从中抽取
人作为调查对象,得到了如图所示的这
人的频率分布直方图,这
人中有
人被学校界定为不健康生活方式者.(1)求这次作为抽样调查对象的教师人数;
(2)根据频率分布直方图估算全校师生每人一天走路步数的中位数(四舍五入精确到整数步);
(3)校办公室欲从全校师生中速记抽取
人作为“每天一万步”活动的慰问对象,计划学校界定不健康生活方式者鞭策性精神鼓励
元,超健康生活方式者表彰奖励
元,一般生活方式者鼓励性奖励
元,利用样本估计总体,将频率视为概率,求这次校办公室慰问奖励金额恰好为
元的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表:
零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5
(1)求出y关于x的线性回归方程
;
(2)试预测加工10个零件需要多少小时?
(参考公式:
=
=
;
;)
相关试题