【题目】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
![]()
(2)把评分不低于70分的用户称为“评分良好用户”,能否有
的把握认为“评分良好用户”与性别有关?
参考附表:
|
|
|
|
|
|
|
|
|
|
参考公式
,其中![]()
参考答案:
【答案】(1)直方图见解析;女性用户的波动小,男性用户的波动大.(2)有
的把握.
【解析】
(Ⅰ)利用频数分布表中所给数据求出各组的频率,利用频率除以组距得到纵坐标,从而可得频率分布直方图,由直方图观察女性用户和男性用户评分的集中与分散情况,即可比较波动大小; (Ⅱ)利用公式求
出
,与临界值比较,即可得出结论.
(Ⅰ)女性用户和男性用户的频率分布直方图分别如下左、右图:
![]()
由图可得女性用户的波动小,男性用户的波动大.
(Ⅱ)2×2列联表如下图:
女性用户 | 男性用户 | 合计 | |
“认可”手机 | 140 | 180 | 320 |
“不认可”手机 | 60 | 120 | 180 |
合计 | 200 | 300 | 500 |
≈5.208>2.706,
所以有
的把握认为性别和对手机的“认可”有关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面
内有不共线的三点到平面
的距离相等,则
;④过平面
的一条斜线,有且只有一个平面与平面
垂直.其中正确的是( )A. ①③B. ②④C. ①④D. ②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
的焦点与椭圆
:
的一个顶点重合,且这个顶点与椭圆
的两个焦点构成的三角形面积为
.(1)求椭圆
的方程; (2)若椭圆
的上顶点为
,过
作斜率为
的直线
交椭圆
于另一点
,线段
的中点为
,
为坐标原点,连接
并延长交椭圆于点
,
的面积为
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:
分组
频数
频率
[39.95,39.97)
10
[39. 97,39.99)
20
[39.99,40.01)
50
[40.01,40.03]
20
合计
100

(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;
(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;
(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于实数a,b,定义运算“*”:a*b=
,设f (x)=(x-4)*
,若关于x的方程|f (x)-m|=1(m∈R)恰有四个互不相等的实数根,则实数m的取值范围是________.
相关试题