【题目】袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是
.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记事件A表示“a+b=2”,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
参考答案:
【答案】(1)2;(2)①.
;②.
.
【解析】试题分析:(1)根据从袋子随机抽取1个小球,取到标号为2的小球的概率是
,可求n的值; (2)①从袋子中不放回地随机抽取2个球,共有基本事件12个,其中“a+b=2”为事件A的基本事件有4个,故可求概率;
②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4恒成立, (x,y)可以看成平面中的点,确定全部结果所构成的区域,事件B构成的区域,即可求得结论.
试题解析:(1)由题意可知,
,解得n=2.
(2)①不放回地随机抽取2个小球的所有基本事件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个.
事件A包含的基本事件为(0,21),(0,22),(21,0),(22,0),共4个,所以P(A)=
.
②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)=
=1-
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
下列四个命题: ①f(f(1))>f(3);
②x0∈(1,+∞),
;
③f(x)的极大值点为x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正确的有 . (写出所有正确命题的序号) -
科目: 来源: 题型:
查看答案和解析>>【题目】设命题p:f(x)=
在区间(1,+∞)上是减函数;命题q:2x﹣1+2m>0对任意x∈R恒成立.若(¬p)∧q为真,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿千瓦时)与(x﹣0.4)元成反比例.又当x=0.65时,y=0.8.
(1)求y与x之间的函数关系式;
(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价﹣成本价)]. -
科目: 来源: 题型:
查看答案和解析>>【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的
倍.
(1)求a,b的值;
(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方体
的棱长为1,线段
上有两个动点
,且
;则下列结论错误的是( )
A.
B.
平面
C. 三棱锥
的体积为定值 D.
的面积与
的面积相等
相关试题