【题目】某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿千瓦时)与(x﹣0.4)元成反比例.又当x=0.65时,y=0.8.
(1)求y与x之间的函数关系式;
(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价﹣成本价)].
参考答案:
【答案】
(1)解:∵y与(x﹣0.4)成反比例,∴设
.
把x=0.65,y=0.8代入上式,得k=0.2,∴
,
即y与x之间的函数关系式为 ![]()
(2)解:根据题意,得(
)(x﹣0.3)=1×(0.8﹣0.3)×(1+20%).
整理,得x2﹣1.1x+0.3=0,解得x1=0.5,x2=0.6.
经检验x1=0.5,x2=0.6都是所列方程的根.
∵x的取值范围是0.55~0.75,故x=0.5不符合题意,应舍去.∴x=0.6
答:当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.
【解析】(1)设出函数解析式,代入x=0.65时,y=0.8,即可求得函数解析式;(2)利用收益=用电量×(实际电价﹣成本价),建立方程,即可求得结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=lnx﹣0.5x+1,则不等式f(2x﹣3)<0.5的解集为( )
A.{x|﹣1<x<1.5}
B.{x|0.5<x<2}
C.{x|x<2}
D.{x|1.5<x<2} -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
下列四个命题: ①f(f(1))>f(3);
②x0∈(1,+∞),
;
③f(x)的极大值点为x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正确的有 . (写出所有正确命题的序号) -
科目: 来源: 题型:
查看答案和解析>>【题目】设命题p:f(x)=
在区间(1,+∞)上是减函数;命题q:2x﹣1+2m>0对任意x∈R恒成立.若(¬p)∧q为真,求实数m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是
.(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记事件A表示“a+b=2”,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的
倍.
(1)求a,b的值;
(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.
相关试题