【题目】如图,在四棱锥
中,PA⊥平面ABCD,CD⊥AD,BC∥AD,
.
![]()
(Ⅰ)求证:CD⊥PD;
(Ⅱ)求证:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.
参考答案:
【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
【解析】
(Ⅰ)由题意可得CD⊥平面PAD,从而易得CD⊥PD;
(Ⅱ)要证BD⊥平面PAB,关键是证明
;
(Ⅲ)在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
(Ⅰ)证明:因为PA⊥平面ABCD,
平面ABCD![]()
所以CD⊥PA.
因为CD⊥AD,
,
所以CD⊥平面PAD.
因为
平面PAD,
所以CD⊥PD.
(II)因为PA⊥平面ABCD,
平面ABCD![]()
所以BD⊥PA.
在直角梯形ABCD中,
,
由题意可得
,
所以
,
所以
.
因为
,
所以
平面PAB.
(Ⅲ)解:在棱PD上存在点M,使CM∥平面PAB,且M是PD的中点.
证明:取PA的中点N,连接MN,BN,
![]()
因为M是PD的中点,所以
.
因为
,所以
.
所以MNBC是平行四边形,
所以CM∥BN.
因为
平面PAB,
平面PAB.
所以
平面PAB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知表1是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表

将表1中的升旗时刻化为分数后作为样本数据(如:
可化为
).(Ⅰ)请补充完成下面的频率分布表及频率分布直方图;
分组
频数
频率
4:00—4:59
3
5:00—5:59
0.25
6:00—6:59
7:00—7:59
5
合计
20

(Ⅱ)若甲学校从上表日期中随机选择一天观看升旗.试估计甲学校观看升旗的时刻早于6:00的概率;
(Ⅲ)若甲,乙两个学校各自从表1中五月、六月的日期中随机选择一天观看升旗, 求两校观看升旗的时刻均不早于5:00的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知下列两个命题:
函数
在[2,+∞)单调递增;
关于
的不等式
的解集为
.若
为真命题,
为假命题,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆
的圆心在
轴上,且经过点
,
.(Ⅰ)求线段AB的垂直平分线方程;
(Ⅱ)求圆
的标准方程;(Ⅲ)过点
的直线
与圆
相交于
、
两点,且
,求直线
的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看
不打算观看
女生
20
b
男生
c
25
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0)
0.10
0.05
0.025
0.01
0.005
K0
2.706
3.841
5.024
6.635
7.879
附:

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的离心率为
,右焦点为
。斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
。(1)求椭圆
的方程;(2)求
的面积。 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
,那么下列结论中错误的是( )A. 若
是
的极小值点,则
在区间
上单调递减B. 函数
的图像可以是中心对称图形C.
,使
D. 若
是
的极值点,则
相关试题