【题目】设P和0是两个集合,定义集合PQ={x|x∈P,且x≠Q},如果P={x|log2x<1},Q={x||x﹣2|<1},那么PQ等于 .
参考答案:
【答案】(0,1]
【解析】解:由集合P中的不等式log2x<1=log22,
根据2>1得到对数函数为增函数及对数函数的定义域,
得到0<x<2,所以集合P=(0,2);
集合Q中的不等式|x﹣2|<1可化为:
,解得1<x<3,所以集合Q=(1,3),
则PQ=(0,1]
所以答案是:(0,1]
【考点精析】根据题目的已知条件,利用交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.

(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( )

A.19、13
B.13、19
C.20、18
D.18、20 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四棱锥P-ABCD中,AD⊥平面PAB,AP⊥AB.

(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB;
-
科目: 来源: 题型:
查看答案和解析>>【题目】【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4—1:几何证明选讲
如图,△ABC的顶点A,C在圆O上,B在圆外,线段AB与圆O交于点M.

(1)若BC是圆O的切线,且AB=8,BC=4,求线段AM的长度;
(2)若线段BC与圆O交于另一点N,且AB=2AC,求证:BN=2MN.
B.选修4—2:矩阵与变换
设a,b∈R.若直线l:ax+y-7=0在矩阵A=
对应的变换作用下,得到的直线为l′:9x+y-91=0.求实数a,b的值.C.选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,直线l:
(t为参数),与曲线C:
(k为参数)交于A,B两点,求线段AB的长.D.选修4—5:不等式选讲
设a≠b,求证:a4+6a2b2+b4>4ab(a2+b2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】若函数f(x)=loga(x+
)是奇函数,则a= . -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为ξ
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.
相关试题