【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,直线
的参数方程为
(
为参数,
),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)若
,求直线
的普通方程及曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
有两个不同的交点,求
的取值范围.
参考答案:
【答案】(Ⅰ)普通方程为
.直角坐标方程为
;(Ⅱ)
.
【解析】
(Ⅰ)根据参普互化的公式,以及极坐标和直角坐标互化的公式得到结果;(Ⅱ)通过分析临界情况,即直线和圆的相切的情况,进而得到满足有2个交点是直线的倾斜角的范围.
(Ⅰ)当
时,直线的
参数方程为
.
所以其普通方程为
.
对于曲线
,由
,得
,
所以其直角坐标方程为
.
(Ⅱ)由题意得,直线
过定点
,
为其倾斜角,曲线
:
,表示以
为圆心,以1为半径的圆.
当
时,直线
为
,此时直线
与圆
不相交.
当
时,设
表示直线的斜率,则
:
.
设圆心
到直线
的距离为
.
当直线
与圆
相切时,令
,解得
或
.
则当直线
与圆
有两个不同的交点时,
.
因为
,由
,可得
,
即
的取值范围为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列有关命题的说法正确的是__________________.
①命题“若x2-3x+2=0,则x=1”的逆否命题为:若x≠1,则x2-3x+2≠0
②x=1是x2-3x+2=0的充分不必要条件
③若p∧q为假命题,则p,q均为假命题
④对于命题p:x∈R,使得x2+x+1<0,则非p:x∈R, 均有x2+x+1≥0
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆C:
的左焦点为F(﹣1,0),离心率为
,过点F的直线l与椭圆C交于A、B两点.(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知F1,F2分别是椭圆C:
1(>b>0)的左、右焦点,过F2且不与x轴垂直的动直线l与椭圆交于M,N两点,点P是椭圆C右准线上一点,连结PM,PN,当点P为右准线与x轴交点时有2PF2=F1F2.(1)求椭圆C的离心率;
(2)当点P的坐标为(2,1)时,求直线PM与直线PN的斜率之和.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.

(2)请根据测量结果得到20名学生身高的中位数
(单位:厘米),将男、女生身高不低于
和低于
的人数填入下表中,并判断是否有
的把握认为男、女生身高有差异?人数
男生
女生
身高

身高

参照公式:

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
.024
6.635
7.879
10.828
(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.假设可以用测量结果的频率代替概率,试求从高二的男生中任意选出2人,恰有1人身高属于正常的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,马路
南边有一小池塘,池塘岸
长40米,池塘的最远端
到
的距离为400米,且池塘的边界为抛物线型,现要在池塘的周边建一个等腰梯形的环池塘小路
,且
均与小池塘岸线相切,记
.
(1)求小路的总长,用
表示;(2)若在小路与小池塘之间(图中阴影区域)铺上草坪,求所需铺草坪面积最小时,
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
的焦距为
分别为椭圆
的左、右顶点,
为椭圆
上的两点(异于
),连结
,且
斜率是
斜率的
倍.(1)求椭圆
的方程;(2)证明:直线
恒过定点.
相关试题