【题目】已知函数
.
(1)若
,解不等式
;
(2)若存在实数
,使得不等式
成立,求实数
的取值范围.
参考答案:
【答案】(1)
;(2)
.
【解析】试题分析:(1)由绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)先化简不等式为|3x﹣a|﹣|3x+6|≥1﹣a,再根据绝对值三角不等式得|3x﹣a|﹣|3x+6|最大值为|a+6|,最后解不等式得实数
的取值范围
试题解析:解:(1)a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,
或
或
,
解得:﹣
≤x≤
;
(2)不等式f(x)≥1﹣a+2|2+x|成立,
即|3x﹣a|﹣|3x+6|≥1﹣a,
由绝对值不等式的性质可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,
即有f(x)的最大值为|a+6|,
∴
或
,
解得:a≥﹣
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
善于使用学案
不善于使用学案
总计
学习成绩优秀
40
学习成绩一般
30
总计
100
参考公式:
,其中
.参考数据:

0.050
0.010
0.001

3.841
6.635
10.828
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“菊花”型烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂.通过研究,发现该型烟花爆裂时距地面的高度
(单位:米)与时间
(单位:秒)存在函数关系,并得到相关数据如表:时间

1


高度




(1)根据表中数据,从下列函数中选取一个函数描述该型烟花爆裂时距地面的高度
与时间
的变化关系:
,
,
,确定此函数解析式并简单说明理由;(2)利用你选取的函数,判断烟花爆裂的最佳时刻,并求此时烟花距地面的高度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,直线
的参数方程为
。在以原点
为极点,
轴正半轴为极轴的极坐标系中,圆
的方程为
。(1)写出直线
的普通方程和圆
的直角坐标方程;(2)若点P坐标为
,圆
与直线
交于
两点,求
的值。 -
科目: 来源: 题型:
查看答案和解析>>【题目】(2016~2017·郑州高一检测)过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程是 ( )
A. x-2y+3=0 B. 2x+y-4=0
C. x-y+1=0 D. x+y-3=0
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:
甲
82
82
79
95
87
乙
95
75
80
90
85
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号
第一组
第二组
第三组
第四组
第五组
分组
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

相关试题