【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )
①平均数
≤3;②标准差S≤2;③平均数
≤3且标准差S≤2;④平均数
≤3且极差小于或等于2;⑤众数等于1且极差小于或等于1.
A.①② B.③④
C.③④⑤ D.④⑤
参考答案:
【答案】D
【解析】对于⑤,由于众数为1,所以1在数据中,又极差≤1,∴最大数≤2,符合要求⑤正确;对于④,由于
≤3,∴必有数据x0≤3,又极差小于或等于2,∴最大数不超过5,④正确;当数据为0,3,3,3,6,3,3时,
=3,S2=
,满足
≤3且S≤2,但不合要求,③错,∴选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面几种推理是合情推理的是
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n-2)·180°___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
, 
(Ⅰ)当
时,求函数
的单调区间;(Ⅱ)若
对任意
恒成立,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知等差数列{an}的前3项和为6,前8项和为-4.
(1)求数列{an}的通项公式;
(2)设bn=(4-an)qn-1 (q≠0,n∈N*),求数列{bn}的前n项和Sn.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式
-kx+1≤0的解集非空,则k的取值范围为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
x3+
x2+
x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.
相关试题