【题目】【2015高考天津,文20】已知函数![]()
(I)求
的单调区间;
(II)设曲线
与
轴正半轴的交点为P,曲线在点P处的切线方程为
,求证:对于任意的正实数
,都有
;
(III)若方程
有两个正实数根
且
,求证:
.
参考答案:
【答案】(I)
的单调递增区间是
,单调递减区间是
;(II)见试题解析;(III)见试题解析.
【解析】
(I)由
,可得
的单调递增区间是
,单调递减区间是
;(II)
,
,证明
在
单调递增,在
单调递减,所以对任意的实数x,
,对于任意的正实数
,都有
;(III)设方程
的根为
,可得
,由
在
单调递减,得
,所以
.设曲线
在原点处的切线为
方程
的根为
,可得
,由
在在
单调递增,且
,可得
所以
.
试题解析:(I)由
,可得
,当
,即
时,函数
单调递增;当
,即
时,函数
单调递减.所以函数
的单调递增区间是
,单调递减区间是
.
(II)设
,则
,
曲线
在点P处的切线方程为
,即
,令
即
则
.
由于
在
单调递减,故
在
单调递减,又因为
,所以当
时,
,所以当
时,
,所以
在
单调递增,在
单调递减,所以对任意的实数x,
,对于任意的正实数
,都有
.
(III)由(II)知
,设方程
的根为
,可得
,因为
在
单调递减,又由(II)知
,所以
.类似的,设曲线
在原点处的切线为
可得
,对任意的
,有
即
.设方程
的根为
,可得
,因为
在
单调递增,且
,因此,
所以
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】【2014课标全国Ⅰ,文12】已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( ).
A.(2,+∞) B.(1,+∞)
C.(-∞,-2) D.(-∞,-1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方体
中,
分别是
的中点.(1)证明:平面
平面
;(2)在
上求一点
,使得
平面
. -
科目: 来源: 题型:
查看答案和解析>>【题目】选修
:不等式选讲已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三人独立地对某一技术难题进行攻关。甲能攻克的概率为
,乙能攻克的概率为
,丙能攻克的概率为
.(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励
万元。奖励规则如下:若只有1人攻克,则此人获得全部奖金
万元;若只有2人攻克,则奖金奖给此二人,每人各得
万元;若三人均攻克,则奖金奖给此三人,每人各得
万元。设甲得到的奖金数为X,求X的分布列和数学期望。(本题满分12分) -
科目: 来源: 题型:
查看答案和解析>>【题目】某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.

为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)当
时,记甲型号电视机的“星级卖场”数量为
,乙型号电视机的“星级卖场”数量为
,比较
的大小关系;(2)在这10个卖场中,随机选取2个卖场,记
为其中甲型号电视机的“星级卖场”的个数,求
的分布列和数学期望;(3)若
,记乙型号电视机销售量的方差为
,根据茎叶图推断
为何值时,
达到最小值.(只需写出结论) -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人玩掷骰子游戏,甲掷出的点数记为
,乙掷出的点数记为
,若关于
的一元二次方程
有两个不相等的实数根时甲胜;方程有两个相等的实数根时为“和”;方程没有实数根时乙胜.
(1)列出甲、乙两人“和”的各种情形;
(2)求甲胜的概率.
必要时可使用此表格

相关试题