【题目】正整数
,
,
是等腰三角形的三边长,并且
,这样的三角形有( )个.
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】C
【解析】
可以化为(a+b)(c+1)=24,其中a,b,c都是正整数,并且其中两个数相等,
令a+b=A,c+1=C则A,C为大于2的正整数,
那么24分解为大于等于2的两个正整数的乘积有几种组合2×12,3×8,4×6,6×4,3×8,2×12,
①、A=2,C=12时,c=11,a+b=2,无法得到满足等腰三角形的整数解;
②、A=3,C=8时,c=7,a+b=3,无法得到满足等腰三角形的整数解;
③、A=4,C=6时,c=5,a+b=4,无法得到满足等腰三角形的整数解;
④、A=6,C=4时,c=3,a+b=6,可以得到a=b=c=3,可以组成等腰三角形;
⑤、A=8,C=3时,c=2,a+b=8,可得a=b=4,c=2,可以组成等腰三角形,a=b=4是两个腰;
⑥、A=12,C=2时,可得a=b=6,c=1,可以组成等腰三角形,a=b=6是两个腰。
∴一共有3个这样的三角形。
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,
.(1)若曲线
在点
处的切线的斜率为5,求
的值;(2)若函数
的最小值为
,求
的值;(3)当
时,
恒成立,求实数
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知长方形ABCD中,AB=1,AD=
。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.
(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.
(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形
是边长为4的正方形,点
为
边上任意一点(与点
不重合),连接
,过点
作
交
于点
,且
,过点
作
,交
于点
,连接
,设
.
(1)求点
的坐标(用含
的代数式表示)(2)试判断线段
的长度是否随点
的位置的变化而改变?并说明理由.(3)当
为何值时,四边形
的面积最小.(4)在
轴正半轴上存在点
,使得
是等腰三角形,请直接写出不少于4个符合条件的点
的坐标(用含
的式子表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司生产的某种时令商品每件成本为
元,经过市场调研发现,这种商品在未来
天内的日销售量
(件)与时间
(天)的关系如下表所示.时间
/天1
3
6
10
36
……
日销售量
/件94
90
84
76
24
……
未来40天内,前20天每天的价格
(元/件)与时间
(天)的函数关系式为
,且
为整数),后20天每天的价格
(元/件)与时间
(天)的函数关系式为
,且
为整数).(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据
(件)与
(天)的关系式;(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?
(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠
元利润
给希望工程. 公司通过销售记录发现,前 20 天中,每天扣除捐赠后的日销售利润随时间
(天)的增大而增大,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
.(1)若曲线
在
和
处的切线互相平行,求
的值;(2)求
的单调区间;(3)设
,若对任意
,均存在
,使得
,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】现有一个以
、
为半径的扇形池塘,在
、
上分别取点
、
,作
、
分别交弧
于点
、
,且
,现用渔网沿着
、
、
、
将池塘分成如图所示的养殖区域.已知
,
,
(
).(1)若区域Ⅱ的总面积为
,求
的值;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当
为多少时,年总收入最大?
相关试题