【题目】提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)
的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0;当
车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,
车流速度
是车流密度
的一次函数.
(1)当
时,求函数
的表达式;
(2)如果车流量(单位时间内通过桥上某观测点的车辆数)
(单位:辆/小时),那么当车流密度
为多大时,车流量
可以达到最大,并求出最大值.(精确到
辆/小时).
参考答案:
【答案】(1)
;(2)
.
【解析】试题分析:
本题考查函数模型在实际中的应用以及分段函数最值的求法。(1)根据题意用分段函数并结合待定系数法求出函数的关系式。(2)首先由题意得到
的解析式,再根据分段函数最值的求得求得最值即可。
试题解析:
(1)由题意:当
时,
;
当
时,设
由已知得
解得
∴
。
综上可得
(2)依题意并由(1)可得
①当
时,
为增函数,
∴当
时,
取得最大值,且最大值为
1200 。
②当
时,
,
∴当
时,
取得最大值,且最大值为
。
所以
的最大值为
。
故当车流密度为100辆/千米时,车流量可以达到最大,且最大值为3333辆/小时.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分
.先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得积分
的近似值为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a)
=c

(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间. -
科目: 来源: 题型:
查看答案和解析>>【题目】求由直线x=1、x=2、y=0及曲线
围成的图形的面积S. -
科目: 来源: 题型:
查看答案和解析>>【题目】一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求
的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成的.已知半球的直径是6 cm,圆柱筒高为2 cm.

(1)这种“浮球”的体积是多少cm3(结果精确到0.1)?
(2)要在2 500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?
-
科目: 来源: 题型:
查看答案和解析>>【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.
(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;
(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.
相关试题