【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
![]()
(1)求
的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
附:
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考答案:
【答案】(1)
人;
(2)列联表如下:
非读书迷 | 读书迷 | 合计 | |
男 | 40 | 15 | 55 |
女 | 20 | 25 | 45 |
合计 | 60 | 40 | 100 |
有99%的把握认为“读书迷”与性别有关
【解析】
试题分析:(1)由频率分布直方图算出“读书迷”的频率,总人数乘以频率即可求出“读书迷”的人数;
(2)由频率分布直方图求出“读书迷”与“非读书迷”的人数,再根据表中数据可求出相应的男女人数,填入表格即可得到列联表,将表中数据代入所给公式求出
观察值,由临界值可得出结论.
试题解析: (1)由已知可得:(0.01+0.02+0.03+x+0.015)×10=1,可得x=0.025,
因为( 0.025+0.015)×10=0.4,将频率视为概率,
由此可以估算出全校3000名学生中读书迷大概有1200人.
(2)完成下面的2×2列联表如下
非读书迷 | 读书迷 | 合计 | |
男 | 40 | 15 | 55 |
女 | 20 | 25 | 45 |
合计 | 60 | 40 | 100 |
…8分
.
,
有99%的把握认为“读书迷”与性别有关.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设m个正数a1 , a2 , …,am(m≥4,m∈N*)依次围成一个圆圈.其中a1 , a2 , a3 , …ak﹣1 , ak(k<m,k∈N*)是公差为d的等差数列,而a1 , am , am﹣1 , …,ak+1 , ak是公比为2的等比数列.
(1)若a1=d=2,k=8,求数列a1 , a2 , …,am的所有项的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整数k,满足a1+a2+…+ak﹣1+ak=3(ak+1+ak+2+…+am﹣1+am)?若存在,求出k值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题正确的是( )
A.单位向量都相等
B.若
与
是共线向量,
与
是共线向量,则
与
是共线向量
C.|
+
|=|
﹣
|,则
=0
D.若
与
是单位向量,则
=1 -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲
万件并全部销售完,每一万件的销售收入为
万元,且
(
),该公司在电饭煲的生产中所获年利润为
(万元),(注:利润=销售收入-成本)(1)写出年利润
(万元)关于年产量
(万件)的函数解析式,并求年利润的最大值;(2)为了让年利润
不低于2360万元,求年产量
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥
中,
,
,
,平面
底面
,
.
和
分别是
和
的中点,求证:
(Ⅰ)
底面
;(Ⅱ)
平面
;(Ⅲ)平面
平面
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知椭圆
,与
轴的正半轴交于点
,右焦点
,
为坐标原点,且
.(1)求椭圆的离心率
;(2)已知点
,过点
任意作直线
与椭圆
交于
两点,设直线
的斜率
,若
,求椭圆
的方程. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列
是公比为
的等比数列,且
是
与
的等比中项,其前
项和为
;数列
是等差数列,
,其前
项和
满足
(
为常数,且
).(1)求数列
的通项公式及
的值;(2)求
.
相关试题