【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
参考答案:
【答案】
(1)解:曲线C1的参数方程式
(t为参数),
得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,
即x2+y2﹣8x﹣10y+16=0.
将x=ρcosθ,y=ρsinθ代入上式,得.
ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;
(2)解:曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,
由
,解得
或
.
∴C1与C2交点的极坐标分别为(
,
),(2,
).
【解析】(1)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(2)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,直线l的参数方程是
(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A、B两点,求|AB|. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系xOy中,直线l的参数方程为
(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,以原点为极点,
轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线
的极坐标方程为
,直线
的参数方程为
(
为参数,
为直线的倾斜角).
(1)写出直线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与曲线
有唯一的公共点,求角
的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费共0.9万元,汽车的维修保养费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……依等差数列逐年递增.
(1)求该车使用了3年的总费用(包括购车费用)为多少万元?
(2)设该车使用
年的总费用(包括购车费用)为
),试写出
的表达式;(3)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
-
科目: 来源: 题型:
查看答案和解析>>【题目】对两个变量x , y进行回归分析,得到一组样本数据:(x1 , y1),(x2 , y2),…(xn , yn),则下列说法中不正确的是( )
A.由样本数据得到的回归方程
必过样本点的中心 
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好
D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1. -
科目: 来源: 题型:
查看答案和解析>>【题目】通过随机调查询问110名性别不同的高中生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由
计算得 
附表:P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”
相关试题