【题目】四棱柱
的底面ABCD为矩形,AB=1,AD=2,
,
,则
的长为( )
A.
B.
C.
D.![]()
参考答案:
【答案】C
【解析】分析:记A1在面ABCD内的射影为O,O在∠BAD的平分线上,说明∠BAD的平分线即菱形ABCD的对角线AC,求AC1的长.
解答:解:记A1在面ABCD内的射影为O,
∵∠A1
AB=∠A1AD,
∴O在∠BAD的平分线上,
由O向AB,AD两边作垂线,垂足分别为E,F,连接A1E,A1F,A1E,A1F分别垂直AB,AD于E,F
∵AA1=3,∠A1AB=∠A1AD=60°,
∴AE=AF=![]()
又四棱柱ABCD-A1B1C1D1的底面ABCD为矩形
∴∠OAF=∠OAE=45°,且OE=OF=
,可得OA=![]()
在直角三角形A1OA中,由勾股定理得A1O=![]()
过C1作C1M垂直底面于M,则有△C1MC≌△A1OA,由此可得M到直线AD的距离是
,M到直线AB的距离是
,C1M=A1O=![]()
所以AC1 =
=![]()
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解关于x的不等式ax2-(2a+3)x+6>0(a∈R).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在篮球比赛中,如果某位球员的得分,篮板,助攻,抢断,盖帽中有两个值达到
或
以上,就称该球员拿到了两双.下表是某球员在最近五场比赛中的数据统计:场次
得分
篮板
助攻
抢断
盖帽






























(
)从上述比赛中任选
场,求该球员拿到“两双”的概率.(
)从上述比赛中任选
场,设该球员拿到“两双”的次数为
,求
的分布列及数学期望.(
)假设各场比赛互相独立,将该球员在上述比赛中获得“两双”的频率作为概率,设其在接下来的三场比赛中获得“两双”的次数为
,试比赛
与
的大小关系(只需写出结论). -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司采用招考方式引进人才,规定必须在
,三个测试点中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每测试个点测试结果互不影响,若考生小李和小王一起前来参加招考,小李在测试点
测试合格的概率分别为
,小王在上述三个测试点测试合格的概率都是
.(1)问小李选择哪两个测试点测试才能使得可以参加面试的可能性最大?请说明理由;
(2)假设小李选择测试点
进行测试,小王选择测试点
进行测试,记
为两人在各测试点测试合格的测试点个数之和,求随机变量
的分布列及数学期望
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知定义域为R的奇函数f(x),当x>0时,f(x)=ax2+bx+8(0<a<4),点A(2,0)在函数f(x)的图象上,且关于x的方程f(x)+1=0有两个相等的实根.
(1)求函数f(x)解析式;
(2)若x∈[t,t+2](t>0)时,函数f(x)有最小值1,求实数t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在公差不为零的等差数列{an}中,a2=1,a2、a4、a8成等比数列.
(1)求数列{an}的通项公式an;
(2)设数列{an}的前n项和为Sn , 记bn=
.Tn=b1+b2+…+bn , 求Tn . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数
为奇函数.(1)求实数k的值;
(2)判断函数f(x)在(3,+∞)上的单调性,并利用定义证明;
(3)解关于x的不等式f(2x+6)>f(4x+3×2x+3).
相关试题