【题目】已知函数![]()
(1)证明:函数
是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图像(草图),并写出函数的值域;
(3)在同一坐标系中画出直线
,观察图像写出不等式
的解集.
参考答案:
【答案】(1)见解析;(2)见解析;(3)
.
【解析】试题分析: 判断函数的奇偶性,首先要考查函数的定义域,函数的定义域关于原点对称是函数具有奇偶性的前提,当函数的定义域关于原点对称式, 根据f(-x)与f(x)的关系,判断函数f(x)为奇偶性;再利用零点分区间讨论法分段去掉绝对值符号,化为分段函数,画出函数图象;根据图象解不等式,这是一种数形结合思想.
试题解析:
(1)依题可得:
的定义域为![]()
![]()
是偶函数
(2)
由函数图象知,函数的值域为
(3)由函数图象知,不等式的解集为![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】设函数
.(1)若当
时,函数
的图象恒在直线
上方,求实数
的取值范围;(2)求证:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示, 四棱锥
底面是直角梯形,
底面
,
为
的中点,
.
(Ⅰ)证明:
;(Ⅱ)证明:
;(Ⅲ)求三棱锥
的体积. -
科目: 来源: 题型:
查看答案和解析>>【题目】近年来我国电子商务行业迎来篷勃发展的新机遇,2016年双11期间,某购物平台的销售业绩高达一千多亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)请完成如下列联表;

(Ⅱ)是否可以在犯错误的概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

(
,其中
) -
科目: 来源: 题型:
查看答案和解析>>【题目】北京时间3月15日下午,谷歌围棋人工智能
与韩国棋手李世石进行最后一轮较量,
获得本场比赛胜利,最终人机大战总比分定格在
.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(1)根据已知条件完成如图列联表,并据此资料判断你是否有
的把握认为“围棋迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“围棋迷”人数为
.若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.附:
,其中
.
0.05
0.010

3.74
6.63
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,动点
到定点
的距离和它到直线
的距离之比是常数
,记动点
的轨迹为
.(1)求轨迹
的方程;(2)过点
且不与
轴重合的直线
,与轨迹
交于
,
两点,线段
的垂直平分线与
轴交于点
,与轨迹
是否存在点
,使得四边形
为菱形?若存在,请求出直线
的方程;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x-1,求函数f(x)的解析式.
(2)已知x+y=12,xy=9且x<y,求
的值.
相关试题